Respuesta :
Answer:
The following are the solution to this question:
Explanation:
The Formula for calculating CDI:
[tex]\bold{CDI = \frac{C \times CR \times EF \times ED}{BW \times AT}}[/tex]
[tex]_{where} \\ CDI = \text{Chronic daily Intake rate} (\frac{mg}{kg-day})} \\\\\text{C = concentration of Toluene}\\\\\text{CR = contact rate} \frac{L}{day}\\\\\text{EF = Exposure frequency} \frac{days}{year}\\\\\text{ED = Exposure duration (in years)} = 10 \ \ years\\\\\text{BW = Body weight (kg) = 70 kg for adult}\\\\ \text{AT = average period of exposure (days) }[/tex]
calculating the value of AT:
[tex]= 365 \frac{days}{year} \times 70 \ year \\\\ = 25550 \ days[/tex]
calculating the value of Intake based drinking:
[tex]C = 1 \ \frac{mg}{L}[/tex]
[tex]CR = 2 \frac{L}{day}[/tex] Considering that adult females eat 2 L of water a day,
EF = 350 [tex]\frac{days}{year}[/tex] for drink
calculating the CDI value:
[tex]\to CDI = \frac{(1 \times 2 \times 350 \times 10)}{(70 \times 25550)}\\\\[/tex]
[tex]= \frac{(2 \times 3500)}{(70 \times 25550)}\\\\ = \frac{(7000)}{(70 \times 25550)}\\\\ = \frac{(100)}{(25550)}\\\\=0.00391 \frac{mg}{ kg-day}[/tex]
Centered on inhalation, intake:
[tex]C = \frac{1 \mu g} { m^3} \ \ \ or \ \ \ \ 0.001 \ \ \frac{mg}{m^3}\\\\CR = 20 \frac{m^3}{day}\\\\EF = 15 \frac{min}{day} \ \ or\ \ 5475 \frac{min}{yr} \ \ \ or \ \ 3.80 \frac{days}{year}\\[/tex]
calculating the value of CDI:
[tex]\to CDI = \frac{(0.001 \times 20 \times 3.80 \times 10)}{(70 \times 25550)}[/tex]
[tex]= \frac{(0.76)}{(1788500)}\\\\= 4.24 \times 10^{-7} \ \ \frac{mg}{kg-day}[/tex]