Answer:
(15,-14)
Step-by-step explanation:
Given that,
The midpoint of FG is (6-4) and the corrdinates of F are (-3,6).
Let (x,y) be the coordinates of point G. Using mid point formula,
[tex]\dfrac{x+(-3)}{2}=6\ \text{and}\ \dfrac{y+6}{2}=-4\\\\x-3=12\ \text{and}\ y+6=-8\\\\x=15,\ \text{and}\ y=-14[/tex]
So, the coordinates of G are (15,-14).