Respuesta :
Answer: The correct option is, (a) 9.0 g
Explanation : Given,
Mass of [tex]N_2H_4[/tex] = 8.0 g
Mass of [tex]N_2O_4[/tex] = 92 g
Molar mass of [tex]N_2H_4[/tex] = 32 g/mol
Molar mass of [tex]N_2O_4[/tex] = 92 g/mol
First we have to calculate the moles of [tex]N_2H_4[/tex] and [tex]N_2O_4[/tex].
[tex]\text{Moles of }N_2H_4=\frac{\text{Given mass }N_2H_4}{\text{Molar mass }N_2H_4}[/tex]
[tex]\text{Moles of }N_2H_4=\frac{8.0g}{32g/mol}=0.25mol[/tex]
and,
[tex]\text{Moles of }N_2O_4=\frac{\text{Given mass }N_2O_4}{\text{Molar mass }N_2O_4}[/tex]
[tex]\text{Moles of }N_2O_4=\frac{92g}{92g/mol}=1mol[/tex]
Now we have to calculate the limiting and excess reagent.
The balanced chemical equation is:
[tex]2N_2H_4(g)+N_2O_4(g)\rightarrow 3N_2(g)+4H_2O(g)[/tex]
From the balanced reaction we conclude that
As, 2 mole of [tex]N_2H_4[/tex] react with 1 mole of [tex]N_2O_4[/tex]
So, 0.25 moles of [tex]N_2H_4[/tex] react with [tex]\frac{0.25}{2}=0.125[/tex] moles of [tex]N_2O_4[/tex]
From this we conclude that, [tex]N_2O_4[/tex] is an excess reagent because the given moles are greater than the required moles and [tex]N_2H_4[/tex] is a limiting reagent and it limits the formation of product.
Now we have to calculate the moles of [tex]H_2O[/tex]
From the reaction, we conclude that
As, 2 mole of [tex]N_2H_4[/tex] react to give 4 mole of [tex]H_2O[/tex]
So, 0.25 mole of [tex]N_2H_4[/tex] react to give [tex]\frac{4}{2}\times 0.25=0.5[/tex] mole of [tex]H_2O[/tex]
Now we have to calculate the mass of [tex]H_2O[/tex]
[tex]\text{ Mass of }H_2O=\text{ Moles of }H_2O\times \text{ Molar mass of }H_2O[/tex]
Molar mass of [tex]H_2O[/tex] = 18 g/mole
[tex]\text{ Mass of }H_2O=(0.5moles)\times (18g/mole)=9.0g[/tex]
Therefore, the mass of [tex]H_2O[/tex] produced is, 9.0 grams.