Answer:
(a) [tex]m_{HNO_3}=2412gHNO_3[/tex]
(b) [tex]Y=80.3\%[/tex]
Explanation:
Hello.
(a) In this case, by starting with 1216 grams of ammonia, we can firstly compute the yielded moles of NO in the first reaction considering the given yield as a fraction (0.962):
[tex]n_{NO}=1216 g NH_3*\frac{1molNH_3}{17gNH_3}*\frac{4molNO}{4molNH_3}*0.962=68.81molNO[/tex]
Next, in the second chemical reaction we compute the yielded moles of NO₂ with the 91.3-percent:
[tex]n_{NO_2}=68.81molNO*\frac{2molNO_2}{2molNO}*0.913=62.82molNO_2[/tex]
Finally, for the percent yield of the last chemical reaction and the molar mass of nitric acid (63 g/mol) we compute the yielded grams of nitric acid:
[tex]m_{HNO_3}=62.82molNO_2*\frac{2molHNO_3}{3molNO_2} *\frac{63gHNO_3}{1molHNO_3}*0.914\\ \\m_{HNO_3}=2412gHNO_3[/tex]
(b) In this case, we compute the moles of NO, NO₂ and the grams of nitric acid as well as the previous literal yet removing the percent yields since we are going to compute theoretical yields:
[tex]n_{NO}=1216 g NH_3*\frac{1molNH_3}{17gNH_3}*\frac{4molNO}{4molNH_3}=71.53molNO[/tex]
[tex]n_{NO_2}=71.53molNO*\frac{2molNO_2}{2molNO}=71.53molNO_2[/tex]
[tex]m_{HNO_3}=71.53molNO_2*\frac{2molHNO_3}{3molNO_2} *\frac{63gHNO_3}{1molHNO_3}*0.914=3004gHNO_3[/tex]
Thus, the overall percent yield is:
[tex]Y=\frac{2412g}{3004g} *100\%\\\\Y=80.3\%[/tex]
Best regards.