Respuesta :

Answer:

4204 K

Explanation:

Step 1: Data

Given data

  • Density of uranium hexafluoride (ρ): 0.5820 g/L
  • Pressure of uranium hexafluoride (P): 0.5073 atm

Required data

  • Universal gas constant (R): 0.08206 atm.L/mol.K
  • Molar mass of uranium hexafluoride (M): 352.02 g/mol

Step 2: Calculate the temperature of the gas

We will use the following expression derived from the ideal gas equation.

P × M = ρ × R × T

T = P × M/ρ × R

T = 0.5073 atm × (352.02 g/mol)/(0.5820 g/L) × (0.08206 atm.L/mol.K)

T = 4204 K

The temperature of the uranium hexafluoride has been 3,737.36 K.

The uranium hexafluoride has been the gas. Assuming the gas to follow the ideal equation:

Pressure × Volume = Moles × R × Temperature

Moles can be defined as:

Moles = [tex]\rm \dfrac{mass}{molecular\;mass}[/tex]

The ideal gas equation can be written in terms of mass as:

Pressure × Volume = [tex]\rm \dfrac{mass}{molecular\;mass}[/tex] × R × Temperature

Pressure = [tex]\rm \dfrac{mass}{volume}[/tex] × [tex]\rm \dfrac{1}{molecular\;mass}[/tex] × R × Temperature

Density can be defined as:

Density = [tex]\rm \dfrac{mass}{volume}[/tex]

The equation in terms of density can be written as:

Pressure = Density × [tex]\rm \dfrac{1}{molecular\;mass}[/tex] × R × Temperature

The molecular mass of uranium hexafluoride = 352.02 g/mol

R = 0.0816 L.atm/K.mol

Pressure = 0.5073 atm

Density = 0.5820 g/L

Substituting the values:

0.5073 atm = 0.5820 g/L × [tex]\rm \dfrac{1}{352.02\;g/mol}[/tex] × 0.0821 L.atm/K.mol × Temperature

0.5073 = 0.000135 × Temperature

Temperature = 3,737.36 K.

The temperature of the uranium hexafluoride has been 3,737.36 K.

For more information about the temperature of the gas, refer to the link:

https://brainly.com/question/16957585

ACCESS MORE
EDU ACCESS
Universidad de Mexico