The blood platelet counts of a group of women have a​ bell-shaped distribution with a mean of and a standard deviation of . ​(All units are 1000 ​cells/​L.) Using the empirical​ rule, find each approximate percentage below.
a. What is the approximate percentage of women with platelet counts within standard of the​ mean, or between and ​?
b. What is the approximate percentage of women with platelet counts between and ​?

Respuesta :

Answer:

(a) Approximately 95% of women with platelet counts within 2 standard deviations of the​ mean.

(b) Approximately 99.7% of women have platelet counts between 65.2 and 431.8.

Step-by-step explanation:

The complete question is: The blood platelet counts of a group of women have a​ bell-shaped distribution with a mean of 248.5 and a standard deviation of 61.1. ​(All units are 1000 ​cells/mu​l.) using the empirical​ rule, find each approximate percentage below.

a. What is the approximate percentage of women with platelet counts within 2 standard deviations of the​ mean, or between 126.3 and 370.7​?

b. What is the approximate percentage of women with platelet counts between 65.2 and 431.8​?

We are given that the blood platelet counts of a group of women have a​ bell-shaped distribution with a mean of 248.5 and a standard deviation of 61.1.

Let X = the blood platelet counts of a group of women

The z-score probability distribution for the normal distribution is given by;

                             Z  =  [tex]\frac{X-\mu}{\sigma}[/tex]  ~ N(0,1)

where, [tex]\mu[/tex] = population mean = 248.5

            [tex]\sigma[/tex] = standard deviation = 61.1

Now, the empirical rule states that;

  • 68% of the data values lie within 1 standard deviation away from the mean.
  • 95% of the data values lie within 2 standard deviations away from the mean.
  • 99.7% of the data values lie within 3 standard deviations away from the mean.

(a) The approximate percentage of women with platelet counts within 2 standard deviations of the​ mean, or between 126.3 and 370.7 is given by;

As we know that;

P([tex]\mu-2\sigma[/tex] < X < [tex]\mu+2\sigma[/tex]) = 0.95

P(248.5 - 2(61.1) < X < 248.5 + 2(61.1)) = 0.95

P(126.3 < X < 370.7) = 0.95

Hence, approximately 95% of women with platelet counts within 2 standard deviations of the​ mean.

(b) The approximate percentage of women with platelet counts between 65.2 and 431.8​ is given by;

Firstly, we will calculate the z-scores for both the counts;

z-score for 65.2 = [tex]\frac{X-\mu}{\sigma}[/tex]

                           = [tex]\frac{65.2-248.5}{61.1}[/tex] = -3

z-score for 431.8 = [tex]\frac{X-\mu}{\sigma}[/tex]

                           = [tex]\frac{431.8-248.5}{61.1}[/tex] = 3

This means that approximately 99.7% of women have platelet counts between 65.2 and 431.8.

ACCESS MORE
EDU ACCESS
Universidad de Mexico