Respuesta :

Answer:

[tex]Direction= 119.74^\circ[/tex]

Explanation:

Displacement Vector

The displacement, as every vector, has a magnitude r and a direction angle θ measured from the positive x-axis.

If we know the x-y components of the displacement, the magnitude and angle can be calculated by the equations:

[tex]r=\sqrt{x^2+y^2}[/tex]

[tex]\displaystyle \tan\theta=\frac{y}{x}[/tex]

The coordinates of the given vector are x=-12 m, y=21 m, thus:

[tex]\displaystyle \tan\theta=\frac{21}{-12}=-1.75[/tex]

[tex]\theta=tan^{-1}(-1.75)=-60.26^\circ[/tex]

Since the vector lies in the second quadrant, we add 180° to find the correct direction:

[tex]\boxed{Direction=-60.26^\circ+180^\circ= 119.74^\circ}[/tex]

ACCESS MORE
EDU ACCESS
Universidad de Mexico