Respuesta :

Step-by-step explanation:

We have to prove that the diagonals bisect each other in a parallelogram ABCD.

∠ABE≃∠CDE ( by alternate interior angles )

∠DEC≃∠BAE ( alternate interior angles )

∠ABE≃∠CDE by ASA

⇒{AE=CEBE=CE}   coordinate sides of ≅ triangle

∠CED≅∠BEA  [ vertical angles ]

△AEB≅△DEC [ by SAS≅A′s ]

∠CDE≅∠BAE [ coordinate angles of ≅ triangles. ]

∴AB∥CD by alternate interior angles ≅ of parallel lines.

∠AEC≅∠DEB  ( vertical angles )

△AEC≅△DEB  ( by SAS )

∠CAE≅∠BDE  [ coordinate angle ]

∴AC∥BC by alternate interior angles

Theorm :

A quadrilateral is a parallelogram if and only if the diagonals bisect each other.

Hence, the answer proved.

Answer:

This is the order from top to bottom you should put in the blanks on the right: 6, 4, 2, 1, 5, 3, 7

ACCESS MORE
EDU ACCESS
Universidad de Mexico