Answer:
[tex]\displaystyle f^{-1}(x)=\frac{6x-60}{5}[/tex]
Step-by-step explanation:
Inverse function
Given the function
[tex]\displaystyle f(x)=\frac{5}{6}x+10[/tex]
We find its inverse following the procedure below:
[tex]\displaystyle y=\frac{5}{6}x+10[/tex]
[tex]6y=5x+60[/tex]
[tex]5x=6y-60[/tex]
[tex]\displaystyle x=\frac{6y-60}{5}[/tex]
[tex]\displaystyle y=\frac{6x-60}{5}[/tex]
[tex]\boxed{\displaystyle f^{-1}(x)=\frac{6x-60}{5}}[/tex]
This is the inverse function