Respuesta :

Answer:

[tex]\displaystyle f^{-1}(x)=\frac{6x-60}{5}[/tex]

Step-by-step explanation:

Inverse function

Given the function

[tex]\displaystyle f(x)=\frac{5}{6}x+10[/tex]

We find its inverse following the procedure below:

  • Set y=f(x)

[tex]\displaystyle y=\frac{5}{6}x+10[/tex]

  • Multiply by 6:

[tex]6y=5x+60[/tex]

  • Operate:

[tex]5x=6y-60[/tex]

  • Solve for x:

[tex]\displaystyle x=\frac{6y-60}{5}[/tex]

  • Swap variables:

[tex]\displaystyle y=\frac{6x-60}{5}[/tex]

  • Make the new y the inverse function:

[tex]\boxed{\displaystyle f^{-1}(x)=\frac{6x-60}{5}}[/tex]

This is the inverse function

RELAXING NOICE
Relax