Answer:
The thermal conductivity of the biomaterial is approximately 1.571 watts per meter-Celsius.
Explanation:
Let suppose that thermal conduction is uniform and one-dimensional, the conduction heat transfer ([tex]\dot Q[/tex]), measured in watts, in the hollow cylinder is:
[tex]\dot Q = \frac{2\cdot k\cdot L}{\ln \left(\frac{D_{o}}{D_{i}} \right)}\cdot (T_{i}-T_{o})[/tex]
Where:
[tex]k[/tex] - Thermal conductivity, measured in watts per meter-Celsius.
[tex]L[/tex] - Length of the cylinder, measured in meters.
[tex]D_{i}[/tex] - Inner diameter, measured in meters.
[tex]D_{o}[/tex] - Outer diameter, measured in meters.
[tex]T_{i}[/tex] - Temperature at inner surface, measured in Celsius.
[tex]T_{o}[/tex] - Temperature at outer surface, measured in Celsius.
Now we clear the thermal conductivity in the equation:
[tex]k = \frac{\dot Q}{2\cdot L\cdot (T_{i}-T_{o})}\cdot \ln\left(\frac{D_{o}}{D_{i}} \right)[/tex]
If we know that [tex]\dot Q = 40.8\,W[/tex], [tex]L = 0.6\,m[/tex], [tex]T_{i} = 50\,^{\circ}C[/tex], [tex]T_{o} = 20\,^{\circ}C[/tex], [tex]D_{i} = 0.01\,m[/tex] and [tex]D_{o} = 0.04\,m[/tex], the thermal conductivity of the biomaterial is:
[tex]k = \left[\frac{40.8\,W}{2\cdot (0.6\,m)\cdot (50\,^{\circ}C-20\,^{\circ}C)}\right]\cdot \ln \left(\frac{0.04\,m}{0.01\,m} \right)[/tex]
[tex]k \approx 1.571\,\frac{W}{m\cdot ^{\circ}C}[/tex]
The thermal conductivity of the biomaterial is approximately 1.571 watts per meter-Celsius.