Respuesta :
Answer:
a
[tex]\mu=E(y) = 7.9[/tex]
b
[tex]\sigma = 2.17[/tex]
c
[tex]P(4 < X < 12) = 0.96[/tex]
Step-by-step explanation:
From the question the data given is
y 3 4 5 6 7 8 9 10 11 12 13
p(y) 0.03 0.05 0.07 0.10 0.14 0.20 0.18 0.12 0.07 0.03 0.01
Generally the mean is mathematically represented as
[tex]\mu =E(y) = \sum_{n=3}^{13} x_i * P(x_i)[/tex]
=> [tex]\mu =E(y) = 3 * 0.03 + 4 * 0.05 + \cdots +13 * 0.01[/tex]
=> [tex]\mu=E(y) = 7.9[/tex]
Generally the standard deviation is mathematically represented as
[tex]\sigma = \sqrt{ [var(y)]}[/tex]
Here [tex][var(y)][/tex] is the variance which is mathematically represented as
[tex][var(y)] = [\sum_{n=3}^{13} x_i^2 * P(x_i)] -[ E(y)]^2[/tex]
=> [tex][var(y)] =[ (3^2 * 0.03 ) + (4^2 * 0.05)+ \cdots + (13^2 * 0.01)] -[ 7.9]^2[/tex]
=> [tex][var(y)] =67.14 - 62.41[/tex]
=> [tex][var(y)] =4.73[/tex]
Thus
[tex]\sigma = \sqrt{ 4.73}[/tex]
[tex]\sigma = 2.17[/tex]
Generally the interval given is µ ± 2σ i.e [ µ - 2σ , µ +2σ]
substituting values
[tex][7.9 - 2(2.17) ,7.9 - 2(2.17) ][/tex]
[tex][3.56 ,12.24 ][/tex]
Now approximating this interval to a whole number
[tex][4 ,12][/tex]
Hence the probability that the value of Y falls in the interval µ ± 2σ is mathematically represented as
[tex]P(4 < X < 12) = P(x__4} ) + \cdots + P(x__{12}})[/tex]
[tex]P(4 < X < 12) = 0.05 + \cdots +0.03[/tex]
[tex]P(4 < X < 12) = 0.96[/tex]