Respuesta :
Answer:
[tex]y=-\frac{3}{4}x-\frac{7}{2}[/tex]
Step-by-step explanation:
To find the equation of a line that passes through the points (-10, 4) and (2, -5), let's first find the slope.
The formula for slope is:
[tex]m=\frac{y_2-y_1}{x_2-x_1}[/tex]
Let's let (-10, 4) be (x₁, y₁) and let's let (2, -5) be (x₂, y₂). Substitute this into the slope formula:
[tex]m=\frac{-5-4}{2-(-10)}[/tex]
Simplify:
[tex]m=\frac{-5-4}{2+10}[/tex]
Add or subtract:
[tex]m=-9/12[/tex]
Reduce:
[tex]m=-3/4[/tex]
Now that we know the slope, we can use the point-slope form to find the equation of our line. The point-slope form is:
[tex]y-y_1=m(x-x_1)[/tex]
Where m is the slope and (x₁, y₁) is a point.
Let's substitute -3/4 for m. Let's also use (-10, 4) be (x₁, y₁) for consistency. So:
[tex]y-4=-\frac{3}{4}(x-(-10))[/tex]
Simplify:
[tex]y-4=-\frac{3}{4}(x+10)[/tex]
Distribute:
[tex]y-4=-\frac{3}{4}x-\frac{30}{4}[/tex]
Add 4 to both sides:
[tex]y=-\frac{3}{4}x-\frac{30}{4}+\frac{16}{4}[/tex]
Add:
[tex]y=-\frac{3}{4}x-\frac{14}{4}[/tex]
Reduce:
[tex]y=-\frac{3}{4}x-\frac{7}{2}[/tex]
And that's our equation.
And we're done!
Otras preguntas
