Respuesta :

Answer:

[tex]\frac{dy}{dx}=\frac{\cos(x)-x\sin(x)}{\sin(y)+y\cos(y)}[/tex]

Step-by-step explanation:

So we have:

[tex]y\sin(y)=x\cos(x)[/tex]

And we want to find dy/dx.

So, let's take the derivative of both sides with respect to x:

[tex]\frac{d}{dx}[y\sin(y)]=\frac{d}{dx}[x\cos(x)][/tex]

Let's do each side individually.

Left Side:

We have:

[tex]\frac{d}{dx}[y\sin(y)][/tex]

We can use the product rule:

[tex](uv)'=u'v+uv'[/tex]

So, our derivative is:

[tex]=\frac{d}{dx}[y]\sin(y)+y\frac{d}{dx}[\sin(y)][/tex]

We must implicitly differentiate for y. This gives us:

[tex]=\frac{dy}{dx}\sin(y)+y\frac{d}{dx}[\sin(y)][/tex]

For the sin(y), we need to use the chain rule:

[tex]u(v(x))'=u'(v(x))\cdot v'(x)[/tex]

Our u(x) is sin(x) and our v(x) is y. So, u'(x) is cos(x) and v'(x) is dy/dx.

So, our derivative is:

[tex]=\frac{dy}{dx}\sin(y)+y(\cos(y)\cdot\frac{dy}{dx}})[/tex]

Simplify:

[tex]=\frac{dy}{dx}\sin(y)+y\cos(y)\cdot\frac{dy}{dx}}[/tex]

And we are done for the right.

Right Side:

We have:

[tex]\frac{d}{dx}[x\cos(x)][/tex]

This will be significantly easier since it's just x like normal.

Again, let's use the product rule:

[tex]=\frac{d}{dx}[x]\cos(x)+x\frac{d}{dx}[\cos(x)][/tex]

Differentiate:

[tex]=\cos(x)-x\sin(x)[/tex]

So, our entire equation is:

[tex]=\frac{dy}{dx}\sin(y)+y\cos(y)\cdot\frac{dy}{dx}}=\cos(x)-x\sin(x)[/tex]

To find our derivative, we need to solve for dy/dx. So, let's factor out a dy/dx from the left. This yields:

[tex]\frac{dy}{dx}(\sin(y)+y\cos(y))=\cos(x)-x\sin(x)[/tex]

Finally, divide everything by the expression inside the parentheses to obtain our derivative:

[tex]\frac{dy}{dx}=\frac{\cos(x)-x\sin(x)}{\sin(y)+y\cos(y)}[/tex]

And we're done!

ACCESS MORE
EDU ACCESS
Universidad de Mexico