Respuesta :

The question is an illustration of remainder theorem

The remainder of [tex]\mathbf{P(x) = x^3 - 5x^2 + 2x - 10}[/tex] divided by [tex]\mathbf{x - 5}[/tex] is 0

The polynomial is given as:

[tex]\mathbf{P(x) = x^3 - 5x^2 + 2x - 10}[/tex]

The divisor is given as:

[tex]\mathbf{x - 5}[/tex]

First, we set the divisor to 0

[tex]\mathbf{x - 5 = 0}[/tex]

Solve for x

[tex]\mathbf{x = 5}[/tex]

Substitute 5 for x in the polynomial

[tex]\mathbf{P(x) = x^3 - 5x^2 + 2x - 10}[/tex]

[tex]\mathbf{P(5) = 5^3 - 5 \times 5^2 + 2 \times 5 - 10}[/tex]

[tex]\mathbf{P(5) = 125 - 125 + 10 - 10}[/tex]

[tex]\mathbf{P(5) = 0}[/tex]

The above equation means that:

The remainder of [tex]\mathbf{P(x) = x^3 - 5x^2 + 2x - 10}[/tex] divided by [tex]\mathbf{x - 5}[/tex] is 0

Read more about remainder theorem at:

https://brainly.com/question/4782198

ACCESS MORE
EDU ACCESS
Universidad de Mexico