Respuesta :
Answer:
[tex]\boxed {x = - \frac{9}{4}}[/tex]
Step-by-step explanation:
Solve for the value of [tex]x[/tex] :
[tex]-2(x + \frac{1}{4}) + 1 = 5[/tex]
-Use Distributive Property:
[tex]-2(x + \frac{1}{4}) + 1 = 5[/tex]
[tex]-2x + \frac{-2}{4} + 1 = 5[/tex]
-Reduce the fraction [tex]\frac{-2}{4}[/tex] to the lowest terms by canceling out [tex]2[/tex] :
[tex]-2x + \frac{-2}{4} + 1 = 5[/tex]
[tex]-2x - \frac{1}{2} + 1 = 5[/tex]
- Convert the integer [tex]1[/tex] to [tex]\frac{2}{2}[/tex] :
[tex]-2x - \frac{1}{2} + 1 = 5[/tex]
[tex]-2x - \frac{1}{2} + \frac{2}{2} = 5[/tex]
-Since both fractions [tex]-\frac{1}{2}[/tex] and [tex]\frac{2}{2}[/tex] have the same denominator, you add the numerators together:
[tex]-2x - \frac{1}{2} + \frac{2}{2} = 5[/tex]
[tex]-2x + \frac{1}{2} = 5[/tex]
-Change the integer [tex]5[/tex] to [tex]\frac{10}{2}[/tex] and subtract [tex]\frac{1}{2}[/tex] on both sides. Then, when both fractions have the same denominator, you subtract them, by subtracting the numerators:
[tex]-2x + \frac{1}{2} - \frac{1}{2} = \frac{10}{2} - \frac{1}{2}[/tex]
[tex]-2x = \frac{9}{2}[/tex]
-Divide by Multiplying [tex]2[/tex] and [tex]-2[/tex] :
[tex]\frac{-2x}{-2} = \frac{9}{2 (-2)}[/tex]
[tex]x = \frac{9}{-4}[/tex]
-Rewrite the answer:
[tex]x = \frac{9}{-4}[/tex]
[tex]\boxed {x = - \frac{9}{4}}[/tex]
