Respuesta :
Answer:
he rode the roller coaster 4 times the bumper cars 3 times and the water slide 4 hoped i helped
Step-by-step explanation:
The question is an illustration of a system of simultaneous equation
He rode the roller coaster 5 times; bumper cars 1 time and water slides 4 times.
Let:
[tex]b \to[/tex] bumper cars
[tex]r \to[/tex] roller coaster
[tex]w \to[/tex] water slides
He rode 10 total rides.
So:
[tex]b + r + w = 10[/tex]
The equation for the times he waited is:
[tex]r + \frac{20}{60}b + \frac{15}{60}w = 6\frac{20}{60}[/tex]
Simplify fraction
[tex]r + \frac b3 + \frac w4 = 6\frac 13[/tex]
The proportion of rides is:
[tex]r =b + w[/tex]
Substitute [tex]r =b + w[/tex] in [tex]b + r + w = 10[/tex] and [tex]r + \frac b3 + \frac w4 = 6\frac 13[/tex]
[tex]b + b + w + w = 10[/tex]
[tex]2b + 2w = 10[/tex]
Divide through by 2
[tex]b + w = 5[/tex]
Similarly
[tex]r + \frac b3 + \frac w4 = 6\frac 13[/tex]
[tex]b + w + \frac b3 + \frac w4 = \frac{19}3[/tex]
Multiply through by 12
[tex]12b + 12w + 4b + 3w = 4 \times 19[/tex]
[tex]16b + 15w = 76[/tex]
Make b the subject in [tex]b + w = 5[/tex]
[tex]b = 5 -w[/tex]
Substitute [tex]b = 5 -w \\[/tex] in [tex]16b + 15w = 76[/tex]
[tex]16(5 -w) + 15w = 76[/tex]
[tex]80 -16w + 15w = 76[/tex]
Collect like terms
[tex]-w = 76 - 80[/tex]
[tex]-w = -4[/tex]
[tex]w = 4[/tex]
Recall that:
[tex]b = 5 -w[/tex]
[tex]b = 5 - 1[/tex]
[tex]b =4[/tex]
Recall that:
[tex]r =b + w[/tex]
[tex]r = 1 + 4[/tex]
[tex]r = 5[/tex]
Hence, he rode the roller coaster 5 times; bumper cars 1 time and water slides 4 times.
Read more about simultaneous equations at:
https://brainly.com/question/16763389