Answer:
The answer is "[tex]\bold{50.42 \pm 0.08}[/tex]".
Explanation:
Overall delivered volume [tex]= [(49.06 \pm 0.05) + (1.77 \pm 0.05)]\ mL[/tex]
Its blank solution without any of the required analysis [tex]= (0.41 \pm 0.04)\ mL[/tex]
Compute the volume of the endpoint as follows:
Formula:
[tex]\text{End point volume = Total Volume delivered - volume required}[/tex]
[tex]= (49.06 \pm 0.05) + (1.77 \pm 0.05) - (0.41 \pm 0.04) \\\\= (49.06 + 1.77 - 0.41) \pm \ \ (absolute \ \ uncertainty)[/tex]
therefore,
absolute uncertainty [tex]=\sqrt{(0.05)^2 + (0.05)^2 + (0.04)^2}[/tex]
[tex]=\sqrt{0.0025 +0.0025 +0.0016} \\ \\=\sqrt{0.0066}\\\\=0.08124\\[/tex]
The Endpoint volume [tex]= (49.06+1.77-0.41)\pm (0.08124)[/tex]
[tex]= 50.42 \pm 0.08[/tex]
Therefore, the volume of the endpoint adjusted for the blank is:
[tex]\bold { = 50.42 \pm 0.08}[/tex]