A particle initially located at the origin has an acceleration of vector a = 2.00ĵ m/s2 and an initial velocity of vector v i = 8.00î m/s.
(a) Find the vector position of the particle at any time t (where t is measured in seconds).
(b) Find the velocity of the particle at any time t.
(c) Find the coordinates of the particle at t = 8.00 s.
(d) Find the speed of the particle at t = 8.00 s.

A particle initially located at the origin has an acceleration of vector a 200ĵ ms2 and an initial velocity of vector v i 800î ms a Find the vector position of class=

Respuesta :

With acceleration

[tex]\mathbf a=\left(2.00\dfrac{\rm m}{\mathrm s^2}\right)\,\mathbf j[/tex]

and initial velocity

[tex]\mathbf v(0)=\left(8.00\dfrac{\rm m}{\rm s}\right)\,\mathbf i[/tex]

the velocity at time t (b) is given by

[tex]\mathbf v(t)=\mathbf v(0)+\displaystyle\int_0^t\mathbf a\,\mathrm du[/tex]

[tex]\mathbf v(t)=\left(8.00\dfrac{\rm m}{\rm s}\right)\,\mathbf i+\displaystyle\int_0^t\left(2.00\dfrac{\rm m}{\mathrm s^2}\right)\,\mathbf j\,\mathrm du[/tex]

[tex]\mathbf v(t)=\left(8.00\dfrac{\rm m}{\rm s}\right)\,\mathbf i+\left(2.00\dfrac{\rm m}{\mathrm s^2}\right)u\,\mathbf j\bigg|_{u=0}^{u=t}[/tex]

[tex]\mathbf v(t)=\left(8.00\dfrac{\rm m}{\rm s}\right)\,\mathbf i+\left(2.00\dfrac{\rm m}{\mathrm s^2}\right)t\,\mathbf j[/tex]

We can get the position at time t (a) by integrating the velocity:

[tex]\mathbf x(t)=\mathbf x(0)+\displaystyle\int_0^t\mathbf v(u)\,\mathrm du[/tex]

The particle starts at the origin, so [tex]\mathbf x(0)=\mathbf0[/tex].

[tex]\mathbf x(t)=\displaystyle\int_0^t\left(8.00\dfrac{\rm m}{\rm s}\right)\,\mathbf i+\left(2.00\dfrac{\rm m}{\mathrm s^2}\right)u\,\mathbf j\,\mathrm du[/tex]

[tex]\mathbf x(t)=\left(\left(8.00\dfrac{\rm m}{\rm s}\right)u\,\mathbf i+\dfrac12\left(2.00\dfrac{\rm m}{\mathrm s^2}\right)u^2\,\mathbf j\right)\bigg|_{u=0}^{u=t}[/tex]

[tex]\mathbf x(t)=\left(8.00\dfrac{\rm m}{\rm s}\right)t\,\mathbf i+\left(1.00\dfrac{\rm m}{\mathrm s^2}\right)t^2\,\mathbf j[/tex]

Get the coordinates at t = 8.00 s by evaluating [tex]\mathbf x(t)[/tex] at this time:

[tex]\mathbf x(8.00\,\mathrm s)=\left(8.00\dfrac{\rm m}{\rm s}\right)(8.00\,\mathrm s)\,\mathbf i+\left(1.00\dfrac{\rm m}{\mathrm s^2}\right)(8.00\,\mathrm s)^2\,\mathbf j[/tex]

[tex]\mathbf x(8.00\,\mathrm s)=(64.0\,\mathrm m)\,\mathbf i+(64.0\,\mathrm m)\,\mathbf j[/tex]

so the particle is located at (x, y) = (64.0, 64.0).

Get the speed at t = 8.00 s by evaluating [tex]\mathbf v(t)[/tex] at the same time:

[tex]\mathbf v(8.00\,\mathrm s)=\left(8.00\dfrac{\rm m}{\rm s}\right)\,\mathbf i+\left(2.00\dfrac{\rm m}{\mathrm s^2}\right)(8.00\,\mathrm s)\,\mathbf j[/tex]

[tex]\mathbf v(8.00\,\mathrm s)=\left(8.00\dfrac{\rm m}{\rm s}\right)\,\mathbf i+\left(16.0\dfrac{\rm m}{\rm s}\right)\,\mathbf j[/tex]

This is the velocity at t = 8.00 s. Get the speed by computing the magnitude of this vector:

[tex]\|\mathbf v(8.00\,\mathrm s)\|=\sqrt{\left(8.00\dfrac{\rm m}{\rm s}\right)^2+\left(16.0\dfrac{\rm m}{\rm s}\right)^2}=8\sqrt5\dfrac{\rm m}{\rm s}\approx17.9\dfrac{\rm m}{\rm s}[/tex]

ACCESS MORE