Respuesta :

Answer:

[tex]\sqrt{41}[/tex]

Step-by-step explanation:

Hello!

In order to answer this question, we need to use the distance formula.

[tex]\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex]

The order of these points can be chosen in any way, but they need to be done in the same pair (just like when you find the slope).

For this problem, let's let the J pair be the [tex]x_2, y_2[/tex] pair and the K pair be the [tex]x_1,y_1[/tex] pair.

[tex]x_2[/tex] = -3

[tex]x_1[/tex] = 2

[tex]y_2[/tex] = 2

[tex]y_1[/tex] = -2

Now, let's plug these points in.

[tex]\sqrt{(-3-2)^2+(2-(-2))^2}[/tex]

[tex]\sqrt{(-3-2)^2+(2+2)^2}[/tex]

[tex]\sqrt{(-5)^2+(4)^2}[/tex]

[tex]\sqrt{25+16}[/tex]

[tex]\sqrt{41}[/tex]

Thus, the distance between points (-3,2) and (2,-2) is [tex]\sqrt{41}[/tex].  

ACCESS MORE
EDU ACCESS
Universidad de Mexico