Answer:
The work transfer per unit mass is approximately 149.89 kJ
The heat transfer for an adiabatic process = 0
Explanation:
The given information are;
P₁ = 1 atm
T₁ = 70°F = 294.2611 F
P₂ = 5 atm
γ = 1.5
Therefore, we have for adiabatic system under compression
[tex]T_{2} = T_{1}\cdot \left (\dfrac{P_{2}}{P_{1}} \right )^{\dfrac{\gamma -1}{\gamma }}[/tex]
Therefore, we have;
[tex]T_{2} = 294.2611 \times \left (\dfrac{5}{1} \right )^{\dfrac{1.5 -1}{1.5 }} \approx 503.179 \ K[/tex]
The p·dV work is given as follows;
[tex]p \cdot dV = m \cdot c_v \cdot (T_2 - T_1)[/tex]
Therefore, we have;
Taking air as a diatomic gas, we have;
[tex]C_v = \dfrac{5\times R}{2} = \dfrac{5\times 8.314}{2} = 20.785 \ J/(mol \cdot K)[/tex]
The molar mass of air = 28.97 g/mol
Therefore, we have
[tex]c_v = \dfrac{C_v}{Molar \ mass} = \dfrac{20.785}{28.97} \approx 0.7175 \ kJ/(kg \cdot K)[/tex]
The work done per unit mass of gas is therefore;
[tex]p \cdot dV =W = 1 \times 0.7175 \times (503.179 - 294.2611) \approx 149.89 \ kJ[/tex]
The work transfer per unit mass ≈ 149.89 kJ
The heat transfer for an adiabatic process = 0.