Respuesta :

Space

Answer:

[tex]\displaystyle \lim_{x \to 2} \frac{x^8 - 256}{x - 2} = 1024[/tex]

General Formulas and Concepts:

Calculus

Limits

Limit Rule [Constant]:                                                                                             [tex]\displaystyle \lim_{x \to c} b = b[/tex]

Limit Rule [Variable Direct Substitution]:                                                             [tex]\displaystyle \lim_{x \to c} x = c[/tex]

Limit Property [Addition/Subtraction]:                                                                   [tex]\displaystyle \lim_{x \to c} [f(x) \pm g(x)] = \lim_{x \to c} f(x) \pm \lim_{x \to c} g(x)[/tex]

L'Hopital's Rule

Differentiation

  • Derivatives
  • Derivative Notation

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Step-by-step explanation:

We are given the following limit:

[tex]\displaystyle \lim_{x \to 2} \frac{x^8 - 256}{x - 2}[/tex]

Substituting in x = 2 using the limit rule, we have:

[tex]\displaystyle \lim_{x \to 2} \frac{x^8 - 256}{x - 2} = \frac{2^8 - 256}{2 - 2}[/tex]

Evaluating the result, we get an indeterminate form:

[tex]\displaystyle \lim_{x \to 2} \frac{x^8 - 256}{x - 2} = \frac{0}{0}[/tex]

Since we have an indeterminate form, let's apply L'Hopital's Rule. Differentiate both the numerator and denominator respectively:

[tex]\displaystyle \lim_{x \to 2} \frac{x^8 - 256}{x - 2} = \lim_{x \to 2} \frac{8x^7}{1}[/tex]

Simplify:

[tex]\displaystyle \lim_{x \to 2} \frac{x^8 - 256}{x - 2} = \lim_{x \to 2} 8x^7[/tex]

Evaluate the limit using the limit rule:

[tex]\displaystyle \lim_{x \to 2} 8x^7 = 8(2)^7[/tex]

Simplify:

[tex]\displaystyle \lim_{x \to 2} 8x^7 = 1024[/tex]

And we have our answer.

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Limits

ACCESS MORE