Respuesta :
Answer:
The correct options are :
b. 5
e. 25
Step-by-step explanation:
The question is incomplete. The missing part is :
'' Which of these values will prove Sherry's claim is false :
a. 3
b. 5
c. 7
d. 11
e. 25 ''
One way to prove that Sherry's claim is false is finding one odd number greater than 1 that when we replace it in the denominator of the expression [tex]\frac{1}{x}[/tex] the result isn't equivalent to a repeating decimal.
Let's analyze each option :
- a. 3
3 is an odd number greater than 1 ⇒ If we replace in the expression [tex]\frac{1}{x}[/tex] ⇒
[tex]\frac{1}{3}[/tex] ≅ 0.3333 (repeating decimal)
The option a. 3 won't prove that Sherry's claim is false.
- b. 5
5 is an odd number greater than 1 ⇒ If we replace in the expression [tex]\frac{1}{x}[/tex] ⇒
[tex]\frac{1}{5}=0.2[/tex]
The result isn't a repeating decimal.
The option b. 5 will prove that Sherry's claim is false.
- c. 7
7 is an odd number greater than 1 ⇒ If we replace in the expression [tex]\frac{1}{x}[/tex] ⇒
[tex]\frac{1}{7}[/tex] ≅ 0.1428 (repeating decimal)
The option c. 7 won't prove that Sherry's claim is false.
- d. 11
11 is an odd number greater than 1 ⇒ If we replace in the expression [tex]\frac{1}{x}[/tex] ⇒
[tex]\frac{1}{11}[/tex] ≅ 0.0909 (repeating decimal)
The option d. 11 won't prove that Sherry's claim is false.
- e. 25
25 is an odd number greater than 1 ⇒ If we replace in the expression [tex]\frac{1}{x}[/tex] ⇒
[tex]\frac{1}{25}[/tex] ≅ 0.04
The result isn't a repeating decimal
The option e. 25 will prove that Sherry's claim is false.