The area of the rectangle is greater than 60 square feet. Identify and solve the inequality that can be used to find the possible values of x. Question 1 2(12)+2(2x−3)>60 12(2x−3)≥60 12+2x−3>60 12(2x−3)>60

Respuesta :

Answer:

D. 12(2x − 3) > 60

 ii. x > 4

Step-by-step explanation:

Area of rectangle = length x width

The length of the rectangle is 12 feet, and the width is (2x - 3) feet.

Area = 12 x (2x - 3)

        = 12(2x - 3)

From the given question,

area of rectangle > 60 square feet

So that;

12(2x - 3) > 60

24x - 36 > 60

24x > 60 + 36

24x > 96

Divide both sides by 24, to have;

[tex]\frac{24x}{24}[/tex] = [tex]\frac{96}{24}[/tex]

x > 4

Therefore,

width = (2x -3)

since x > 4, then;

width  > (2x4 - 3)

          > 8 -3

width > 5 feet

Thus,

length x width > 60

ACCESS MORE