Respuesta :
Answer:
t is between 0 seconds and 4.878
Step-by-step explanation:
Given:
Inequality: [tex]-4.9t^2 + 22t + 0.75 > 10[/tex]
Required
Determine the value(s) of t
To answer this question, we simply solve the inequality
[tex]-4.9t^2 + 22t + 0.75 > 10[/tex]
Subtract 10 from both sides
[tex]-4.9t^2 + 22t + 0.75 - 10> 10 - 10[/tex]
[tex]-4.9t^2 + 22t -9.25> 0[/tex]
Multiply through by -1
[tex]4.9t^2 - 22t + 9.25 < 0[/tex]
Solve the value of t using quadratic formula
[tex]t = \frac{-b \± \sqrt{b^2 - 4ac}}{2a}[/tex]
Where
a = 4.9; b = -22 and c = -9.25
So:
[tex]t = \frac{-(-22) \± \sqrt{(-22)^2 - 4 * 4.9 * -9.25}}{2 * 4.9}[/tex]
[tex]t = \frac{22 \± \sqrt{484 + 181.3}}{9.8}[/tex]
[tex]t = \frac{22 \± \sqrt{665.3}}{9.8}[/tex]
[tex]t = \frac{22 \± 25.80}{9.8}[/tex]
Split the expression
[tex]t = \frac{22 + 25.80}{9.8}[/tex] or [tex]t = \frac{22 - 25.80}{9.8}[/tex]
[tex]t = \frac{47.8}{9.8}[/tex] or [tex]t = \frac{-3.8}{9.8}[/tex]
[tex]t = 4.878[/tex] or [tex]t = -0.388[/tex]
Since t cannot be negative; Then
[tex]t < 4.878[/tex]
Hence; t is between 0 seconds and 4.878