Respuesta :
Answer:
[tex]f^{-1}(x)=4(x+5)[/tex]
Step-by-step explanation:
So we have the function:
[tex]f(x)=\frac{x}{4}-5[/tex]
To find the inverse of a function, switch f(x) and x, change f(x) to f⁻¹(x), and solve for it. Thus:
[tex]x=\frac{f^{-1}(x)}{4}-5[/tex]
Add 5 to both sides:
[tex]x+5=\frac{f^{-1}(x)}{4}[/tex]
Multiply both sides by 4:
[tex]f^{-1}(x)=4(x+5)[/tex]
And we're done!
Hope this helps!
Answer:
[tex]\huge \boxed{F^{-1}(x)=4(x+5)}[/tex]
[tex]\rule[225]{225}{2}[/tex]
Step-by-step explanation:
[tex]\displaystyle F(x)= \frac{x}{4} - 5[/tex]
[tex]\displaystyle y= \frac{x}{4} - 5[/tex]
Switching variables,
[tex]\displaystyle x= \frac{y}{4} - 5[/tex]
Solving for y,
[tex]\displaystyle x+5= \frac{y}{4}[/tex]
[tex]4(x+5)=y[/tex]
[tex]\rule[225]{225}{2}[/tex]