Respuesta :

Answer:

[tex]f^{-1}(x)=4(x+5)[/tex]

Step-by-step explanation:

So we have the function:

[tex]f(x)=\frac{x}{4}-5[/tex]

To find the inverse of a function, switch f(x) and x, change f(x) to f⁻¹(x), and solve for it. Thus:

[tex]x=\frac{f^{-1}(x)}{4}-5[/tex]

Add 5 to both sides:

[tex]x+5=\frac{f^{-1}(x)}{4}[/tex]

Multiply both sides by 4:

[tex]f^{-1}(x)=4(x+5)[/tex]

And we're done!

Hope this helps!

Answer:

[tex]\huge \boxed{F^{-1}(x)=4(x+5)}[/tex]

[tex]\rule[225]{225}{2}[/tex]

Step-by-step explanation:

[tex]\displaystyle F(x)= \frac{x}{4} - 5[/tex]

[tex]\displaystyle y= \frac{x}{4} - 5[/tex]

Switching variables,

[tex]\displaystyle x= \frac{y}{4} - 5[/tex]

Solving for y,

[tex]\displaystyle x+5= \frac{y}{4}[/tex]

[tex]4(x+5)=y[/tex]

[tex]\rule[225]{225}{2}[/tex]