Respuesta :
Answer:
Domain : [tex](-\infty,\infty)[/tex], Range : [tex](-16,\infty)[/tex], Minimum Value = -16
Function is a quadratic function. x-intercepts are -4 and 4.
The function decreasing before vertex = [tex](-\infty,0)[/tex]
The function increasing after vertex = [tex](0,\infty)[/tex]
y-intercept is -16.
Function is Positive : [tex](-\infty,-4)\cup (4,\infty)[/tex], Function is negative : [tex](-4,4)[/tex]
Interval Increasing Domain: [tex](0,\infty)[/tex], Interval Decreasing Range: [tex](-\infty,-16)[/tex]
Step-by-step explanation:
The given function is
[tex]f(x)=x^2-16[/tex] ...(1)
It is an upward parabola because coefficient of [tex]x^2[/tex] is positive.
The vertex form of a parabola is
[tex]f(x)=a(x-h)^2+k[/tex] ...(2)
where, a is constant and (h,k) is vertex.
From (1) and (2), we get
[tex]a=1,h=0,k=-16[/tex]
So, vertex of the parabola is (0,-16).
Key features are:
The given function is defined for all values of x. So,
Domain : [tex](-\infty,\infty)[/tex]
The value of a function which is an upward parabola cannot be less than the y-coordinate of its vertex.
Range : [tex](-16,\infty)[/tex]
Minimum Value = y-coordinate of vertex = -16
Function is a quadratic function.
For f(x)=0,
[tex]0=x^2-16[/tex]
[tex]16=x^2[/tex]
[tex]x=\pm 4[/tex]
So, x-intercepts are -4 and 4.
The function decreasing before vertex = [tex](-\infty,0)[/tex]
The function increasing after vertex = [tex](0,\infty)[/tex]
For x=0,
[tex]f(0)=(0)^2-16=-16[/tex]
So, y-intercept is -16.
Function is Positive : [tex](-\infty,-4)\cup (4,\infty)[/tex]
Function is negative : [tex](-4,4)[/tex]
Interval Increasing Domain: [tex](0,\infty)[/tex]
Interval Decreasing Range: [tex](-\infty,-16)[/tex]