Respuesta :
Answer:
-6
Step-by-step explanation:
Given that :
we are to evaluate the Riemann sum for [tex]f(x) = 3 - \dfrac{1}{2}x[/tex] from 2 ≤ x ≤ 14
where the endpoints are included with six subintervals, taking the sample points to be the left endpoints.
The Riemann sum can be computed as follows:
[tex]L_6 = \int ^{14}_{2}3- \dfrac{1}{2}x \dx = \lim_{n \to \infty} \sum \limits ^6 _{i=1} \ f (x_i -1) \Delta x[/tex]
where:
[tex]\Delta x = \dfrac{b-a}{a}[/tex]
a = 2
b =14
n = 6
∴
[tex]\Delta x = \dfrac{14-2}{6}[/tex]
[tex]\Delta x = \dfrac{12}{6}[/tex]
[tex]\Delta x =2[/tex]
Hence;
[tex]x_0 = 2 \\ \\ x_1 = 2+2 =4\\ \\ x_2 = 2 + 2(2) \\ \\ x_i = 2 + 2i[/tex]
Here, we are using left end-points, then:
[tex]x_i-1 = 2+ 2(i-1)[/tex]
Replacing it into Riemann equation;
[tex]L_6 = \lim_{n \to \infty} \sum \imits ^{6}_{i=1} \begin {pmatrix}3 - \dfrac{1}{2} \begin {pmatrix} 2+2 (i-1) \end {pmatrix} \end {pmatrix}2[/tex]
[tex]L_6 = \lim_{n \to \infty} \sum \imits ^{6}_{i=1} 6 - (2+2(i-1))[/tex]
[tex]L_6 = \lim_{n \to \infty} \sum \imits ^{6}_{i=1} 6 - (2+2i-2)[/tex]
[tex]L_6 = \lim_{n \to \infty} \sum \imits ^{6}_{i=1} 6 -2i[/tex]
[tex]L_6 = \lim_{n \to \infty} \sum \imits ^{6}_{i=1} 6 - \lim_{n \to \infty} \sum \imits ^{6}_{i=1} 2i[/tex]
[tex]L_6 = \lim_{n \to \infty} \sum \imits ^{6}_{i=1} 6 - 2 \lim_{n \to \infty} \sum \imits ^{6}_{i=1} i[/tex]
Estimating the integrals, we have :
[tex]= 6n - 2 ( \dfrac{n(n-1)}{2})[/tex]
= 6n - n(n+1)
replacing thevalue of n = 6 (i.e the sub interval number), we have:
= 6(6) - 6(6+1)
= 36 - 36 -6
= -6