Determine whether the planes are parallel, perpendicular, or neither.
x − y − 3z = 1, 3x + y − z = 2
If neither, find the angle between them. (Round your answer to one decimal place. If the planes are parallel or perpendicular, enter PARALLEL or PERPENDICULAR, respectively.)

Respuesta :

Answer:

Neither planes are parallel nor perpendicular to each other. (NEITHER)

Step-by-step explanation:

Each expression can be represented as dot product, that is:

[tex](1, -1,-3)\bullet (x,y, z) = 1[/tex]

[tex](3, 1, -1)\bullet (x,y,z) = 2[/tex]

Where first vector is known as plane generator. It is also known that dot product equals to the following expression:

[tex]\vec u \bullet \vec v = \|\vec u\|\cdot \|\vec v \| \cdot \cos \theta[/tex]

The cosine is therefore cleared:

[tex]\cos \theta = \frac{\vec u \bullet \vec v}{\|\vec u\|\cdot \|\vec v\|}[/tex]

The norm of each vector is determined by these expressions:

[tex]\|\vec u\|=\sqrt{\vec u\bullet \vec u}[/tex] and [tex]\|\vec v\| =\sqrt{\vec v\bullet \vec v}[/tex]

Planes are parallel to each other when [tex]\cos \theta = \pm1[/tex] and perpendicular to each other if [tex]\cos \theta = 0[/tex].

If [tex]\vec u = (-1,-1,3)[/tex] and [tex]\vec v = (3,1,-1)[/tex], then:

[tex]\|\vec u\| = \sqrt{(-1,-1,3)\bullet (-1,-1,3)}[/tex]

[tex]\|\vec u\| =\sqrt{1+1+9}[/tex]

[tex]\|\vec u\| = \sqrt{10}[/tex]

[tex]\|\vec v\|=\sqrt{(3,1,-1)\bullet(3,1,-1)}[/tex]

[tex]\|\vec v\|=\sqrt{10}[/tex]

[tex]\vec u \bullet \vec v = (1)\cdot (3)+(-1)\cdot (1) +(-3)\cdot (-1)[/tex]

[tex]\vec u \bullet \vec v = 3-1+3[/tex]

[tex]\vec u\bullet \vec v = 5[/tex]

[tex]\cos \theta = \frac{5}{10}[/tex]

[tex]\cos \theta = \frac{1}{2}[/tex]

Neither planes are parallel nor perpendicular to each other.