Answer: [tex](6+7\sqrt{3},0)\text{ and }(6-7\sqrt{3},0)[/tex] are the required points.
or (18.124,0) and ( -6.124,0) are the required points.
Step-by-step explanation:
Let (x,0) be the point on x -axis that are 14 units from the point (6,-7) .
Then by distance formula , we have
[tex]\sqrt{(x-6)^2+(0-(-7))^2}=14\ \ \ [\ \because distance=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}][/tex]
Taking square on both the sides , we get
[tex](x-6)^2+7^2=14^2\\\\\Rightarrow\ x^2+6^2-2(6)x+49=196\\\\\Rightarrow\ x^2+36-12x=147\\\\\Rightarrow\ x^2-12x=111\\\\\Rightarrow\ x^2-12x-111=0[/tex]
Using quadratic formula : [tex]x=\dfrac{-b\pm\sqrt{b^2-4ac}}{2a}[/tex]
[tex]x=\dfrac{12\pm\sqrt{(-12)^2-4(1)(-111)}}{2}\\\\\Rightarrow\ x=\dfrac{12\pm\sqrt{144+444}}{2}\\\\\Rightarrow\ x=\dfrac{12\pm\sqrt{588}}{2}\\\\\Rightarrow\ x=\dfrac{12\pm\sqrt{2^2\times7^2\times3}}{2}\\\\\Rightarrow\ x=\dfrac{12\pm14\sqrt{3}}{2}\\\\\Rightarrow\ x=6\pm7\sqrt{3}[/tex]
so, [tex](6+7\sqrt{3},0)\text{ and }(6-7\sqrt{3},0)[/tex] are the required points.
since [tex]\sqrt{3}=1.732[/tex]
so, [tex](6+7(1.732),0)\text{ and }(6-7(1.732),0)[/tex] are the required points.
i.e. (18.124,0) and ( -6.124,0) are the required points.