Respuesta :
Answer:
x = 13
m<RST = 155°
m<RSU = 102°
Step-by-step explanation:
m<RST = (12x - 1)°
m<RSU = (9x - 15)°
m<UST = 53°
m<UST + m<RSU = m<RST (angle addition postulate)
53 + (9x - 15) = (12x - 1) (substitution)
Solve for x
53 + 9x - 15 = 12x - 1
53 - 15 + 9x = 12x - 1
38 + 9x = 12x - 1
Subtract 12x from each side
38 + 9x - 12x = 12x - 1 - 12x
38 - 3x = - 1
Subtract 38 from each side
38 - 3x - 38 = -1 - 38
-3x = -39
Divide both sides by -3
x = 13
m<RST = (12x - 1)°
Plug in the value of x
m<RST = 12(13) - 1 = 156 - 1 = 155°
m<RSU = (9x - 15)°
m<RSU = 9(13)x - 15 = 117 - 15 = 102°
The measures of each angle are:
m<RSU = 102°
m<RST = 155°
m<UST = 53°
The given parameters are:
m<RST = (12x - 1)°
m<RSU = (9x - 15)°
m<UST = 53°
Note that:
m<RST = m<RSU + m<UST
Substitute m<RST = 12x - 1, m<RSU = 9x - 15, and m<UST = 53 into the equation above in order to solve for x
m<RST = m<RSU + m<UST
12x - 1 = 9x - 15 + 53
12x - 9x = -15 + 53 + 1
3x = 39
x = 39/3
x = 13
To find the measure of <RST, substitute x = 3 into m<RST = 12x - 1
m<RST = 12(13) - 1
m<RST = 155°
To find the measure of <RSU, substitute x = 3 into m<RSU = 9x - 15
m<RSU = 9(13) - 15
m<RSU = 102°
Learn more on angles here: https://brainly.com/question/14362353