Answer:
Step-by-step explanation:
From the given information, the symmetric equations for the line pass through(4, -5, 2) i.e ([tex]x_o, y_o, z_o[/tex]) and are parallel to [tex]\dfrac{x+5}{1} = \dfrac{y}{2}= \dfrac{z-3}{1}[/tex]
The parallel vector to the line i + zj+k = ai + bj + ck
Hence, the equation for the line is :
[tex]x = x_o + at \\ \\ x = y_o + bt \\ \\ x = z_o + ct[/tex]
x = 4 + t
y = -5 + 2t
z = 2 + t
Thus, x, y, z = ( 4+t, -5+2t, 2+t )
The symmetric equation can now be as follows:
[tex]\begin {vmatrix} x = 4+ t \\ \\ \dfrac{x-4}{1} = t \begin {vmatirx} \end {vmatrix}[/tex][tex]\begin {vmatrix} y = - 5+2t \\ \\ \dfrac{y+5}{2} =t \end {vmatrix}[/tex][tex]\begin {vmatrix} z =2+t \\ \\ \dfrac{z-2}{1} =t \end {vmatrix}[/tex]
∴
[tex]\dfrac{x-4}{1}= \dfrac{y+5}{2}=\dfrac{z-2}{1}[/tex]