Respuesta :

Answer:

So the way to  express a vector( [tex]v =  2i - 2j - 2k[/tex]) as a product of its length and direction is

        [tex]v  =    |v| u =  \sqrt{12} (\frac{2}{ \sqrt{12} } , -\frac{2}{ \sqrt{12} }, - \frac{2}{ \sqrt{12} })[/tex]

 

Step-by-step explanation:

Generally a vector  is  expressed as a product of its length and direction using the formula below  

           [tex]v  =  |v|\cdot u[/tex]

Here v is the vector

        |v| is its magnitude (length)

         u is its unit vector (direction)

Now let take an example

Let  

     [tex]v =  2i - 2j - 2k[/tex]

The magnitude is mathematically evaluated as

          [tex]|v| =  \sqrt{ 2^2  + (-2)^2 +  (-2)^2 }[/tex]

         [tex]|v| =  \sqrt{12}[/tex]

The unit vector is mathematically represented as

        [tex]u  =  \frac{v}{|v|}[/tex]

        [tex]u  =  \frac{ <2 , -2 , -2>}{\sqrt{12} }[/tex]

    [tex]u =  \frac{2}{ \sqrt{12} } , -\frac{2}{ \sqrt{12} }, - \frac{2}{ \sqrt{12} }[/tex]

So

    [tex]v  =    |v| u =  \sqrt{12} (\frac{2}{ \sqrt{12} } , -\frac{2}{ \sqrt{12} }, - \frac{2}{ \sqrt{12} })[/tex]