Answer:
[tex] \boxed{\sf Time \ taken \ by \ the \ object \ to \ hit \ the \ ground = 2.68 \ s} [/tex]
Given:
Initial velocity (u) of the object = 0 m/s (Body starts from rest)
Height above the ground (h) = 36 m
Accelration due to gravity (g) = 10 m/s²
To Find:
Time taken (t) by the object to hit the ground
Explanation:
From equation of motion for object under gravity we have:
[tex] \boxed{ \bold{h = ut - \frac{1}{2} g {t}^{2} }}[/tex]
Substituting values of h, u & g in the equation we get:
[tex] \sf \implies 36 = 0(t) - \frac{1}{2} \times 10 \times {t}^{2} \\ \\ \sf \implies 36 = \frac{1}{2} \times 10 \times {t}^{2} \\ \\ \sf \implies 36 = 5 {t}^{2} \\ \\ \sf \implies 5 {t}^{2} = 36 \\ \\ \sf \implies {t}^{2} = \frac{36}{5} \\ \\ \sf \implies {t}^{2} = 7.2 \\ \\ \sf \implies t = \sqrt{7.2} \\ \\ \sf \implies t = 2.68 \: s[/tex]