Respuesta :

Answer:

(3,-5)

Step-by-step explanation:

Given

[tex]M = (2,2)[/tex]

[tex]H = (1,9)[/tex]

Required

Determine G

This is calculated using the following midpoint formula;

[tex]M(x,y) = (\frac{x_1 + x_2}{2},\frac{y_1 + y_2}{2})[/tex]

Where

[tex](x,y) = (2,2)[/tex] and [tex](x_1,y_1) = (1,9)[/tex]

Substitute these values in the formula above

[tex](2,2) = (\frac{1 + x_2}{2},\frac{9 + y_2}{2})[/tex]

Solving for [tex]x_2[/tex]

[tex]2 =\frac{1 + x_2}{2}[/tex]

Multiply both sides by 2

[tex]2 * 2 = 1 + x_2[/tex]

[tex]4 = 1 + x_2[/tex]

[tex]x_2 = 4 - 1[/tex]

[tex]x_2 = 3[/tex]

Solving for [tex]y_2[/tex]

[tex]2 = \frac{9 + y_2}{2}[/tex]

Multiply both sides by 2

[tex]2 * 2 = 9 + y_2[/tex]

[tex]4 = 9 + y_2[/tex]

[tex]y_2 = 4 - 9[/tex]

[tex]y_2= -5[/tex]

Hence, the coordinates of G is [tex](3,-5)[/tex]