Let G be the garvitational constant and R be the radius of earth. If the radius of the earth becomes half, the new value of gravitational constant will be

Respuesta :

Answer:

G = 1.670 × [tex]10^{-11}[/tex] [tex]m^{3}kg^{-1}s^{-2}[/tex]

Explanation:

From Newton's law of universal gravitation,

F = [tex]\frac{GMm}{R^{2} }[/tex]

Where F is the force of attraction, G is the gravitational constant, M is the mass of the earth, R is the radius of the earth.

From Newton's second law of motion,

F = mg

mg = [tex]\frac{GMm}{R^{2} }[/tex]

g = [tex]\frac{GM}{R^{2} }[/tex]

⇒    G = [tex]\frac{gR^{2} }{M}[/tex]

If the radius of the earth becomes half,

R = [tex]\frac{R}{2}[/tex], then;

G = [tex]\frac{gR^{2} }{4M}[/tex]

Given that: g = 9.8 m/[tex]s^{2}[/tex], radius of the earth is 6371000 m, mass of the earth is 5.972 × [tex]10^{24}[/tex]kg, then;

G   = [tex]\frac{9.8*(6371000)^{2} }{4*5.972*10^{24} }[/tex]

   = 1.670 × [tex]10^{-11}[/tex] [tex]m^{3}kg^{-1}s^{-2}[/tex]