Answer:
G = 1.670 × [tex]10^{-11}[/tex] [tex]m^{3}kg^{-1}s^{-2}[/tex]
Explanation:
From Newton's law of universal gravitation,
F = [tex]\frac{GMm}{R^{2} }[/tex]
Where F is the force of attraction, G is the gravitational constant, M is the mass of the earth, R is the radius of the earth.
From Newton's second law of motion,
F = mg
mg = [tex]\frac{GMm}{R^{2} }[/tex]
g = [tex]\frac{GM}{R^{2} }[/tex]
⇒ G = [tex]\frac{gR^{2} }{M}[/tex]
If the radius of the earth becomes half,
R = [tex]\frac{R}{2}[/tex], then;
G = [tex]\frac{gR^{2} }{4M}[/tex]
Given that: g = 9.8 m/[tex]s^{2}[/tex], radius of the earth is 6371000 m, mass of the earth is 5.972 × [tex]10^{24}[/tex]kg, then;
G = [tex]\frac{9.8*(6371000)^{2} }{4*5.972*10^{24} }[/tex]
= 1.670 × [tex]10^{-11}[/tex] [tex]m^{3}kg^{-1}s^{-2}[/tex]