Answer:
[tex]25\frac{1}{4}[/tex] feet
Step-by-step explanation:
Given
[tex]Maddy = 67\frac{3}{4}[/tex] above Jasmin
[tex]Jasmin = 42\frac{1}{2}[/tex] below Quinn
Required
Determine Maddy's position relative to Quinn's
From the given parameter, one can easily deduce that Quinn is in between Maddy and Jasmin (See attachment)
Using the attachment as a point of reference;
[tex]z = 67\frac{3}{4}[/tex]
[tex]x = 42\frac{1}{2}[/tex]
The relationship between x, y and z is
[tex]z = y + x[/tex]
Make y the subject of formula
[tex]y = z - x[/tex]
Substitute the values of z and x
[tex]y = 67\frac{3}{4} - 42\frac{1}{2}[/tex]
Convert to improper fractions
[tex]y = \frac{271}{4} - \frac{85}{2}[/tex]
Take LCM
[tex]y = \frac{271 - 170}{4}[/tex]
[tex]y = \frac{101}{4}[/tex]
[tex]y = 25\frac{1}{4}[/tex]
Hence; Maddy's position relative to Quinn's is [tex]25\frac{1}{4}[/tex] feet