Answer:
The value of m + k = [tex]5+\frac{1}{2}[/tex] = [tex]\frac{11}{2}[/tex].
Step-by-step explanation:
We are given that C is the midpoint of segment AB where A(-3,m) , B (4, -1) , and C (k, 2).
As we know that the mid-point formula states that;
Mid-point = [tex]\frac{a+b}{2}[/tex]
This means that;
Mid-point of AB = [tex]\frac{A+B}{2}[/tex]
C(k, 2) = [tex](\frac{-3+4}{2}, \frac{m+(-1)}{2} )[/tex]
C(k, 2) = [tex](\frac{1}{2}, \frac{m-1}{2} )[/tex]
This means that;
[tex]k = \frac{1}{2}[/tex] and [tex]2=\frac{m-1}{2}[/tex]
[tex]k = \frac{1}{2}[/tex] and [tex]m-1=4[/tex]
[tex]k = \frac{1}{2}[/tex] and [tex]m = 4+1 = 5[/tex]
So, the value of m + k = [tex]5+\frac{1}{2}[/tex] = [tex]\frac{11}{2}[/tex].