Respuesta :

Answer:

The value of m + k = [tex]5+\frac{1}{2}[/tex] = [tex]\frac{11}{2}[/tex].

Step-by-step explanation:

We are given that C is the midpoint of segment AB where A(-3,m) , B (4, -1) , and C (k, 2).

As we know that the mid-point formula states that;

Mid-point = [tex]\frac{a+b}{2}[/tex]

This means that;

Mid-point of AB = [tex]\frac{A+B}{2}[/tex]

C(k, 2) = [tex](\frac{-3+4}{2}, \frac{m+(-1)}{2} )[/tex]

C(k, 2) = [tex](\frac{1}{2}, \frac{m-1}{2} )[/tex]

This means that;

[tex]k = \frac{1}{2}[/tex]  and  [tex]2=\frac{m-1}{2}[/tex]

[tex]k = \frac{1}{2}[/tex]  and  [tex]m-1=4[/tex]

[tex]k = \frac{1}{2}[/tex]  and  [tex]m = 4+1 = 5[/tex]

So, the value of m + k = [tex]5+\frac{1}{2}[/tex] = [tex]\frac{11}{2}[/tex].