Respuesta :

Answer:

sine and cosec are inverse of each other.

cosine and sec are inverse of each other.

tan and cot are inverse of each other.

Step-by-step explanation:

Given point on terminal side of an angle ([tex]\frac{1}{3},\frac{1}4[/tex]).

Kindly refer to the attached image for the diagram of the given point.

Let it be point A([tex]\frac{1}{3},\frac{1}4[/tex])

Let O be the origin i.e. (0,0)

Point B will be ([tex]\frac{1}{3},0[/tex])

Now, let us consider the right angled triangle [tex]\triangle OBA[/tex]:

Sides:

[tex]Base, OB = \frac{1}{3}\\Perpendicular, AB = \frac{1}{4}[/tex]

Using Pythagorean theorem:

[tex]\text{Hypotenuse}^{2} = \text{Base}^{2} + \text{Perpendicular}^{2}\\\Rightarrow OA^{2} = OB^{2} + AB^{2}\\\Rightarrow OA^{2} = \frac{1}{3}^{2} + \frac{1}{4}^{2}\\\Rightarrow OA = \sqrt{\frac{1}{3}^{2} + \frac{1}{4}^{2}}\\\Rightarrow OA = \sqrt{\frac{4^2+3^2}{3^{2}.4^2 }}\\\Rightarrow OA = \frac{5}{12}[/tex]

[tex]sin \angle AOB = \dfrac{Perpendicular}{Hypotenuse}[/tex]

[tex]\Rightarrow sin \angle AOB = \dfrac{\frac{1}{4}}{\frac{5}{12}}\\\Rightarrow sin \angle AOB = \dfrac{3}{5}[/tex]

[tex]cos\angle AOB = \dfrac{Base}{Hypotenuse}[/tex]

[tex]\Rightarrow cos \angle AOB = \dfrac{\frac{1}{3}}{\frac{5}{12}}\\\Rightarrow cos\angle AOB = \dfrac{4}{5}[/tex]

[tex]tan\angle AOB = \dfrac{Perpendicular}{Base}[/tex]

[tex]\Rightarrow tan\angle AOB = \dfrac{3}{4}[/tex]

[tex]cosec \angle AOB = \dfrac{Hypotenuse}{Perpendicular}[/tex]

[tex]\Rightarrow cosec\angle AOB = \dfrac{5}{3}[/tex]

[tex]sec\angle AOB = \dfrac{Hypotenuse}{Base}[/tex]

[tex]\Rightarrow sec\angle AOB = \dfrac{5}{4}[/tex]

[tex]cot\angle AOB = \dfrac{Base}{Perpendicular}[/tex]

[tex]\Rightarrow cot\angle AOB = \dfrac{4}{3}[/tex]

Ver imagen isyllus