Respuesta :
Answer:
From
m∠1 = m∠4
m∠1 + m∠2 = m∠3 + m∠4
m∠2 = m∠3 [tex]{}[/tex] Identity property
∠2 ≅ ∠3 [tex]{}[/tex] [tex]{}[/tex] Equal angles are congruent
Step-by-step explanation:
Given [tex]{}[/tex] Reason
∠1 and ∠2 are supplementary [tex]{}[/tex] Given
Therefore;
m∠1 + m∠2 = 180° [tex]{}[/tex] Supplementary ∠s sum up to 180°
∠3 and ∠4 are supplementary [tex]{}[/tex] Given
Therefore;
m∠3 + m∠4 = 180° [tex]{}[/tex] Supplementary ∠s sum up to 180°
From which we have;
m∠1 + m∠2 = 180° = m∠3 + m∠4 [tex]{}[/tex] [tex]{}[/tex] Transitive property
m∠1 + m∠2 = m∠3 + m∠4
∠1 ≅ ∠4 [tex]{}[/tex] Given
m∠1 = m∠4 [tex]{}[/tex] Congruent ∠s have equal measure
Therefore;
m∠1 + m∠2 = m∠3 + m∠1 [tex]{}[/tex] [tex]{}[/tex] Transitive property
Therefore;
m∠1 + m∠2 - m∠1= m∠3 + m∠1 - m∠1 [tex]{}[/tex]Subtraction property
m∠1 - m∠1 + m∠2 = m∠3 + m∠1 - m∠1 [tex]{}[/tex]
0 + m∠2 = m∠3 + 0 [tex]{}[/tex] Inverse property
Therefore;
m∠2 = m∠3 [tex]{}[/tex] Identity property
∠2 ≅ ∠3 [tex]{}[/tex] [tex]{}[/tex] Equal angles are congruent.
Answer:
- <1 and <2 are supp. given
- m <1+ m<2 =180. def. of supplementary angles
- <1≅<4. given
- <3 and <4 are supp. given
- m< 3 + m<4 = 180. def. of supplementary angles
- m<1+m<2 = m< 3 + m<4. substitution property
- m<1 = m<4. definition of ≅ angles
- m<1+m<2 = m< 3 + m<1. Substitution property
- m<2 = m< 3. subtraction property
- <2 ≅ < 3. definition of ≅ angle