Proving the Congruent Supplements Theorem
Try
Statements Reasons
Given: 21 and 22 are supplements, 23
and 24 are supplements, and
2124
Prove. 22 23
m2 1 + m 2 = 180
m23+ m24 = 180
21 and 22 are supp.
23 and 24 are supp
21 24
m2 1 + m 2 = m 3 + m24
Statements
Reasons
3
2
Assemble the proof by dragging tiles to
the Statements and Reasons columns

Proving the Congruent Supplements Theorem Try Statements Reasons Given 21 and 22 are supplements 23 and 24 are supplements and 2124 Prove 22 23 m2 1 m 2 180 m23 class=

Respuesta :

Answer:

From

m∠1 = m∠4  

m∠1 + m∠2 = m∠3 + m∠4

m∠2 = m∠3 [tex]{}[/tex]                                                Identity property

∠2 ≅ ∠3 [tex]{}[/tex]                                      [tex]{}[/tex]               Equal angles are congruent

Step-by-step explanation:

Given [tex]{}[/tex]                                                                            Reason

∠1 and ∠2 are supplementary    [tex]{}[/tex]             Given

Therefore;

m∠1 + m∠2 = 180°                              [tex]{}[/tex]       Supplementary ∠s sum up to 180°

∠3 and ∠4 are supplementary    [tex]{}[/tex]             Given

Therefore;

m∠3 + m∠4 = 180°                              [tex]{}[/tex]       Supplementary ∠s sum up to 180°

From which we have;

m∠1 + m∠2 = 180° = m∠3 + m∠4       [tex]{}[/tex]   [tex]{}[/tex]    Transitive property

m∠1 + m∠2 = m∠3 + m∠4

∠1 ≅ ∠4                          [tex]{}[/tex]                             Given

m∠1 = m∠4                                    [tex]{}[/tex]              Congruent ∠s have equal measure

Therefore;

m∠1 + m∠2 = m∠3 + m∠1              [tex]{}[/tex]         [tex]{}[/tex]   Transitive property

Therefore;

m∠1 + m∠2 - m∠1= m∠3 + m∠1 - m∠1       [tex]{}[/tex]Subtraction property

m∠1 - m∠1 + m∠2 = m∠3 + m∠1 - m∠1  [tex]{}[/tex]    

0 + m∠2 = m∠3 + 0                             [tex]{}[/tex]       Inverse property

Therefore;

m∠2 = m∠3 [tex]{}[/tex]                                                Identity property

∠2 ≅ ∠3 [tex]{}[/tex]                                      [tex]{}[/tex]               Equal angles are congruent.

jadyen

Answer:

  1. <1 and <2 are supp. given
  2. m <1+ m<2 =180. def. of supplementary angles
  3. <1≅<4. given
  4. <3 and <4 are supp. given
  5. m< 3 + m<4 = 180. def. of supplementary angles
  6. m<1+m<2 = m< 3 + m<4. substitution property
  7. m<1 = m<4. definition of angles
  8. m<1+m<2 = m< 3 + m<1. Substitution property
  9. m<2 = m< 3. subtraction property
  10. <2 ≅ < 3. definition of angle