The mass of a high speed train is 4.5×105 kg, and it is traveling forward at a velocity of 8.3×101 m/s. Given that momentum equals mass times velocity, determine the values of m and n when the momentum of the train (in kg⋅m/s) is written in scientific notation.

Respuesta :

Answer:

The value of m = 3.735 and the value of n = 7.

Explanation:

The equation for the momentum of the train is,

                                          P = mv  

Here, m is the mass of the train and v is the speed of the train.

Substitute [tex]4.5 \times {10^5}{\rm{ kg}} , 8.3 \times {10^1}{\rm{ m/s}}[/tex] for m and v respectively in above equation.

[tex]\begin{array}{c}\\P = \left( {4.5 \times {{10}^5}{\rm{ kg}}} \right)\left( {8.3 \times {{10}^1}{\rm{ m/s}}} \right)\\\\ = 37.35 \times {10^6}{\rm{ kg}} \cdot {\rm{m/s}}\left( {\frac{{{{10}^1}{\rm{kg}} \cdot {\rm{m/s}}}}{{10\,{\rm{kg}} \cdot {\rm{m/s}}}}} \right)\\\\ = 3.735 \times {10^7}{\rm{ kg}} \cdot {\rm{m/s}}\\\end{array}[/tex]  

According to the scientific notation, here the value of m is 3.735 and the value of n is 7 in the final answer of the momentum.

                        The value of m = 3.735 and the value of n = 7.