You haven't described whether they're connected in series or in parallel. Actually, there are eight (8) different ways they can be arranged, and each way has a different equivalent resistance.
==> All 3 resistors in series. Equivalent resistance = (2+3+4) = 9.000 ohms
==> All 3 resistors in parallel.
Equivalent resistance = 1 / (1/2 + 1/3 + 1/4) = (12/13) ohm or 0.923 ohm
==> The 2 ohm resistor in series with (the 3 and the 4 in parallel)
Equivalent resistance = 2 + 1/(1/3 + 1/4) = 3.714 ohms
==> The 3 ohm resistor in series with (the 2 and the 4 in parallel)
Equivalent resistance = 3 + 1/(1/2 + 1/4) = 4.333 ohms
==> The 4 ohm resistor in series with (the 2 and the 3 in parallel)
Equivalent resistance = 4 + 1/(1/2 + 1/3) = 5.200 ohms
==> The 2 ohm resistor in parallel with (the 3 and the 4 in series)
Equivalent resistance = 1.556 ohms
==> The 3 ohm resistor in parallel with (the 2 and the 4 in series)
Equivalent resistance = 2.000 ohms
==> The 4 ohm resistor in parallel with (the 2 and the 3 in series)
Equivalent resistance = 2.222 ohms