Respuesta :
Answer:
a) [tex]a = 2[/tex] and [tex]b = -4[/tex], b) [tex]c = -10[/tex], c) [tex]f(-2) = -\frac{5}{3}[/tex], d) [tex]y = -\frac{5}{2}[/tex].
Step-by-step explanation:
a) After we read the statement carefully, we find that rational-polyomic function has the following characteristics:
1) A root of the polynomial at numerator is -2. (Removable discontinuity)
2) Roots of the polynomial at denominator are 1 and -2, respectively. (Vertical asymptote and removable discontinuity.
We analyze each polynomial by factorization and direct comparison to determine the values of [tex]a[/tex], [tex]b[/tex] and [tex]c[/tex].
Denominator
i) [tex](x+2)\cdot (x-1) = 0[/tex] Given
ii) [tex]x^{2} + x-2 = 0[/tex] Factorization
iii) [tex]2\cdot x^{2}+2\cdot x -4 = 0[/tex] Compatibility with multiplication/Cancellative Property/Result
After a quick comparison, we conclude that [tex]a = 2[/tex] and [tex]b = -4[/tex]
b) The numerator is analyzed by applying the same approached of the previous item:
Numerator
i) [tex]c\cdot x - 5\cdot x^{2} = 0[/tex] Given
ii) [tex]x \cdot (c-5\cdot x) = 0[/tex] Distributive Property
iii) [tex](-5\cdot x)\cdot \left(x-\frac{c}{5}\right)=0[/tex] Distributive and Associative Properties/[tex](-a)\cdot b = -a\cdot b[/tex]/Result
As we know, this polynomial has [tex]x = -2[/tex] as one of its roots and therefore, the following identity must be met:
i) [tex]\left(x -\frac{c}{5}\right) = (x+2)[/tex] Given
ii) [tex]\frac{c}{5} = -2[/tex] Compatibility with addition/Modulative property/Existence of additive inverse.
iii) [tex]c = -10[/tex] Definition of division/Existence of multiplicative inverse/Compatibility with multiplication/Modulative property/Result
The value of [tex]c[/tex] is -10.
c) We can rewrite the rational function as:
[tex]f(x) = \frac{(-5\cdot x)\cdot \left(x+2 \right)}{2\cdot (x+2)\cdot (x-1)}[/tex]
After eliminating the removable discontinuity, the function becomes:
[tex]f(x) = -\frac{5}{2}\cdot \left(\frac{x}{x-1}\right)[/tex]
At [tex]x = -2[/tex], we find that [tex]f(-2)[/tex] is:
[tex]f(-2) = -\frac{5}{2}\cdot \left[\frac{(-2)}{(-2)-1} \right][/tex]
[tex]f(-2) = -\frac{5}{3}[/tex]
d) The value of the horizontal asympote is equal to the limit of the rational function tending toward [tex]\pm \infty[/tex]. That is:
[tex]y = \lim_{x \to \pm\infty} \frac{-10\cdot x-5\cdot x^{2}}{2\cdot x^{2}+2\cdot x -4}[/tex] Given
[tex]y = \lim_{x \to \infty} \left[\left(\frac{-10\cdot x-5\cdot x^{2}}{2\cdot x^{2}+2\cdot x-4}\right)\cdot 1\right][/tex] Modulative Property
[tex]y = \lim_{x \to \infty} \left[\left(\frac{-10\cdot x-5\cdot x^{2}}{2\cdot x^{2}+2\cdot x-4}\right)\cdot \left(\frac{x^{2}}{x^{2}} \right)\right][/tex] Existence of Multiplicative Inverse/Definition of Division
[tex]y = \lim_{x \to \pm \infty} \left(\frac{\frac{-10\cdot x-5\cdot x^{2}}{x^{2}} }{\frac{2\cdot x^{2}+2\cdot x -4}{x^{2}} } \right)[/tex] [tex]\frac{\frac{x}{y} }{\frac{w}{z} } = \frac{x\cdot z}{y\cdot w}[/tex]
[tex]y = \lim_{x \to \pm \infty} \left(\frac{-\frac{10}{x}-5 }{2+\frac{2}{x}-\frac{4}{x^{2}} } \right)[/tex] [tex]\frac{x}{y} + \frac{z}{y} = \frac{x+z}{y}[/tex]/[tex]x^{m}\cdot x^{n} = x^{m+n}[/tex]
[tex]y = -\frac{5}{2}[/tex] Limit properties/[tex]\lim_{x \to \pm \infty} \frac{1}{x^{n}} = 0[/tex], for [tex]n \geq 1[/tex]
The horizontal asymptote to the graph of f is [tex]y = -\frac{5}{2}[/tex].
Using asymptote concepts, it is found that:
a) Building a quadratic equation with leading coefficient 2 and roots 1 and -2, it is found that a = 2, b = -4.
b) c = -10, since the discontinuity at x = -2 is removable, the numerator is 0 when x = -2.
c) Simplifying the function, it is found that at [tex]x = -2, f(x) = -\frac{5}{3}[/tex].
d) The equation for the horizontal asymptote to the graph of f is [tex]y = -\frac{5}{2}[/tex]
-------------------------
Item a:
- Vertical asymptote at [tex]x = 1[/tex] and discontinuity at [tex]x = -2[/tex] means that the the roots of the quadratic function at the denominator are [tex]x = 1[/tex] and [tex]x = -2[/tex].
- The leading coefficient is given as 2, thus, we build the equation to find coefficients a and b.
[tex]2(x - 1)(x - (-2)) = 2(x - 1)(x + 2) = 2(x^2 + x - 2) = 2x^2 + 2x - 4[/tex]
[tex]2x^2 + ax + b = 2x^2 - 2x - 4[/tex]
Thus a = 2, b = -4.
-------------------------
Item b:
- Removable discontinuity at [tex]x = -2[/tex] means that the numerator when [tex]x = -2[/tex] is 0, thus:
[tex]-2c - 5(-2)^2 = 0[/tex]
[tex]-2c - 20 = 0[/tex]
[tex]2c = -20[/tex]
[tex]c = -\frac{20}{2}[/tex]
[tex]c = -10[/tex]
-------------------------
Item c:
With the coefficients, the function is:
[tex]f(x) = \frac{-10x - 5x^2}{2x^2 + 2x - 4} = \frac{-5x(x + 2)}{2(x - 1)(x + 2)} = -\frac{5x}{2(x - 1)}[/tex]
At x = -2:
[tex]-\frac{5(-2)}{2(-2 - 1)} = -\frac{-10}{-6} = -(\frac{5}{3}) = -\frac{5}{3}[/tex]
Thus, simplifying the function, it is found that at [tex]x = -2, f(x) = -\frac{5}{3}[/tex]
-------------------------
Item d:
The horizontal asymptote of a function is:
[tex]y = \lim_{x \rightarrow \infty} f(x)[/tex]
Thus:
[tex]y = \lim_{x \rightarrow \infty} \frac{-10x - 5x^2}{2x^2 + 2x - 4} = \lim_{x \rightarrow \infty} \frac{-5x^2}{2x^2} = \lim_{x \rightarrow \infty} -\frac{5}{2} = -\frac{5}{2}[/tex]
The equation for the horizontal asymptote to the graph of f is [tex]y = -\frac{5}{2}[/tex]
A similar problem is given at https://brainly.com/question/23535769