Respuesta :
Answer:
Approximately [tex]2.64\times 10^{20}[/tex] (assumption: wavelength [tex]525\; \rm nm[/tex] is measured in vacuum, where the speed of light is approximately [tex]3.0\times 10^{8}\; \rm m \cdot s^{-1}[/tex].)
Explanation:
Convert the unit of wavelength to meters:
[tex]\displaystyle \lambda = 525\; \rm nm = 525 \; \rm nm\times \frac{10^{-9}\; \rm m}{1\; \rm nm} = 5.25 \times 10^{-7}\; \rm m[/tex].
Assume that the wavelength [tex]525\; \rm nm[/tex] is measured in vacuum, where the speed of light is approximately [tex]2.99792\times 10^{8}\; \rm m \cdot s^{-1}[/tex]. Calculate the frequency of this light from its wavelength:
[tex]\displaystyle f = \frac{c}{\lambda} \approx \frac{2.99792\times 10^{8}\; \rm m \cdot s^{-1}}{5.25 \times 10^{-7}\; \rm m} \approx 5.71429\times 10^{14}\; \rm s^{-1}[/tex].
The Planck's Constant can help find the energy of a photon given its frequency. Look up this constant to more than three significant figures:
[tex]h \approx 6.62607\times 10^{-34}\; \rm J \cdot s^{-1}[/tex].
Calculate the energy of one such photon:
[tex]\begin{aligned} E &= h \cdot f\\ &\approx 6.62607\times 10^{-34}\; \rm J \cdot s^{-1} \times 5.71023\times 10^{14}\; \rm s \\ &\approx 3.78370\times 10^{-19}\; \rm J \end{aligned}[/tex].
Calculate the number of these photons that [tex]100\; \rm J[/tex] of energy can produce under the assumption of [tex]100\%[/tex] conversion:
[tex]\displaystyle \frac{100\; \rm J}{3.78370\times 10^{-19}\; \rm J} \approx 2.64\times 10^{20}[/tex].
(Rounded to three significant figures.)