contestada

A 100-watt light bulb radiates energy at a rate of 100 J/s. (The watt, a unit of power or energy over time, is defined as 1 J/s J/s.) If all of the light emitted has a wavelength of 525nm 525nm, how many photons are emitted per second? Express your answer to three significant figures.

Respuesta :

Answer:

Approximately [tex]2.64\times 10^{20}[/tex] (assumption: wavelength [tex]525\; \rm nm[/tex] is measured in vacuum, where the speed of light is approximately [tex]3.0\times 10^{8}\; \rm m \cdot s^{-1}[/tex].)

Explanation:

Convert the unit of wavelength to meters:

[tex]\displaystyle \lambda = 525\; \rm nm = 525 \; \rm nm\times \frac{10^{-9}\; \rm m}{1\; \rm nm} = 5.25 \times 10^{-7}\; \rm m[/tex].

Assume that the wavelength [tex]525\; \rm nm[/tex] is measured in vacuum, where the speed of light is approximately [tex]2.99792\times 10^{8}\; \rm m \cdot s^{-1}[/tex]. Calculate the frequency of this light from its wavelength:

[tex]\displaystyle f = \frac{c}{\lambda} \approx \frac{2.99792\times 10^{8}\; \rm m \cdot s^{-1}}{5.25 \times 10^{-7}\; \rm m} \approx 5.71429\times 10^{14}\; \rm s^{-1}[/tex].

The Planck's Constant can help find the energy of a photon given its frequency. Look up this constant to more than three significant figures:

[tex]h \approx 6.62607\times 10^{-34}\; \rm J \cdot s^{-1}[/tex].

Calculate the energy of one such photon:

[tex]\begin{aligned} E &= h \cdot f\\ &\approx 6.62607\times 10^{-34}\; \rm J \cdot s^{-1} \times 5.71023\times 10^{14}\; \rm s \\ &\approx 3.78370\times 10^{-19}\; \rm J \end{aligned}[/tex].

Calculate the number of these photons that [tex]100\; \rm J[/tex] of energy can produce under the assumption of [tex]100\%[/tex] conversion:

[tex]\displaystyle \frac{100\; \rm J}{3.78370\times 10^{-19}\; \rm J} \approx 2.64\times 10^{20}[/tex].

(Rounded to three significant figures.)