Answer:
[tex]Area = 112.5[/tex]
Step-by-step explanation:
Given
[tex]X = (15,20)[/tex]
[tex]Y = (15,5)[/tex]
[tex]Z = (0,5)[/tex]
Required
Determine the area of the triangle
The area is calculated using the following formula:
[tex]Area = |\frac{X_x(Y_y - Z_y) + Y_x(X_y - Z_y) + Z_x(X_y - Y_y)}{2}|[/tex]
Where
[tex](X_x,X_y) = (15,20)[/tex]
[tex](Y_x,Y_y) = (15,5)[/tex]
[tex](Z_x,Z_y)= (0,5)[/tex]
Substitute right values in the given formula:
[tex]Area = |\frac{15(5 -5) + 15(20 - 5) + 0(20 - 5)}{2}|[/tex]
[tex]Area = |\frac{15(0) + 15(15) + 0(15)}{2}|[/tex]
[tex]Area = |\frac{0 + 225 + 0}{2}|[/tex]
[tex]Area = |\frac{225}{2}|[/tex]
[tex]Area = |112.5|[/tex]
[tex]Area = 112.5[/tex]
Hence, the area of the triangle is 112.5