The change in kinetic energy (in joules) as a horse accelerates from canter to gallop is found using the expression 1/2 times 350 times (12 2 Minus 6 2

Respuesta :

Answer:

[tex]\mathtt{\Delta K.E = 10500 \ J}[/tex]

Step-by-step explanation:

Given that:

the expression for the change in kinetic energy = [tex]\dfrac{1}{2} \times 350 \times ( 122 -62)[/tex]

Recall that

Kinetic energy K.E = [tex]\dfrac{1}{2}mv^2[/tex]

where,

m = mass of the horse

v = velocity of the horse

The change in kinetic energy between  two instant times can be expressed by the relation

[tex]\Delta K.E = K.E_2 - K.E_1[/tex]

[tex]\Delta K.E =\dfrac{1}{2}mv^2_2- \dfrac{1}{2}mv^2_1[/tex]

[tex]\Delta K.E =\dfrac{1}{2}m(v^2_2-v^2_1)[/tex]

where;

m = 350

[tex]v_2[/tex] = 122

[tex]v_1[/tex]= 62

[tex]\Delta K.E =\dfrac{1}{2} \times 350 \times (122-62)[/tex]

[tex]\Delta K.E =\dfrac{1}{2} \times 350 \times (60)[/tex]

[tex]\Delta K.E = 350 \times 30[/tex]

[tex]\mathtt{\Delta K.E = 10500 \ J}[/tex]