Find the equation of the tangent line to the curve at the given point?
y = x cot(x) at the point with x-coordinate= π/4

Respuesta :

Answer:

The equation of the tangent line

[tex]y - \frac{\pi }{4} = (\frac{-\pi }{2} +1)( x - \frac{\pi }{4} )[/tex]

Step-by-step explanation:

Step(i):-

Given function y = x cot (x) ....(i)

Differentiating equation (i) with respective to 'x' , we get

[tex]\frac{dy}{dx} = x (-Co sec^{2} (x)) +cot(x) (1)[/tex]

Step(ii):-

The slope of the tangent line

[tex]\frac{d y}{d x} = -x Co-sec^{2} (x) +cot x[/tex]

[tex](\frac{d y}{d x} )x_{=\frac{\pi }{4} } = -\frac{\pi }{4} Co-sec^{2} (\frac{\pi }{4} ) +cot \frac{\pi }{4}[/tex]

We will use trigonometry formulas

[tex]Cosec(\frac{\pi }{4} ) = \sqrt{2}[/tex]

[tex]sec(\frac{\pi }{4} ) = \sqrt{2}[/tex]

[tex]Cot(\frac{\pi }{4} ) = 1[/tex]

Now the slope of the tangent

[tex]\frac{dy}{dx} =-\frac{\pi }{4} (\sqrt{2})^{2} )+1[/tex]

[tex]\frac{dy}{dx} =-\frac{\pi }{2} +1[/tex]

Step(iii):-

Given

Substitute [tex]x=\frac{\pi }{4}[/tex] in y = x cot (x)

               [tex]y = \frac{\pi }{4} cot (\frac{\pi }{4} )[/tex]

              [tex]y = \frac{\pi }{4}[/tex]

The point of the tangent line  [tex](x ,y ) = (\frac{\pi }{4} , \frac{\pi }{4} )[/tex]

The equation of the tangent line

[tex]y - y_{1} = m ( x - x_{1} )[/tex]

[tex]y - \frac{\pi }{4} = (\frac{-\pi }{2} +1)( x - \frac{\pi }{4} )[/tex]