Respuesta :

Answer:

c×3 (2 b^3 - 2 a b + a)

Step-by-step explanation:

Simplify the following:

c (4 b^3 + 3 a) + b (2 c b^2 - 6 a c)

Hint: | Factor common terms out of 2 c b^2 - 6 a c.

Factor 2 c out of 2 c b^2 - 6 a c:

c (4 b^3 + 3 a) + b×2 c (b^2 - 3 a)

Hint: | Pull a common factor out of c (4 b^3 + 3 a) + b×2 c (b^2 - 3 a).

Factor c out of c (4 b^3 + 3 a) + b×2 c (b^2 - 3 a), resulting in c ((4 b^3 + 3 a) + b×2 (b^2 - 3 a)):

c (4 b^3 + 3 a + 2 b (b^2 - 3 a))

Hint: | Distribute 2 b over b^2 - 3 a.

2 b (b^2 - 3 a) = 2 b^3 - 6 a b:

c (4 b^3 + 3 a + 2 b^3 - 6 a b)

Hint: | Group like terms in 4 b^3 + 3 a - 6 a b + 2 b^3.

Grouping like terms, 4 b^3 + 3 a - 6 a b + 2 b^3 = (4 b^3 + 2 b^3) - 6 a b + 3 a:

c (4 b^3 + 2 b^3) - 6 a b + 3 a

Hint: | Add like terms in 4 b^3 + 2 b^3.

4 b^3 + 2 b^3 = 6 b^3:

c (6 b^3 - 6 a b + 3 a)

Hint: | Factor out the greatest common divisor of the coefficients of 6 b^3 - 6 a b + 3 a.

Factor 3 out of 6 b^3 - 6 a b + 3 a:

Answer: c×3 (2 b^3 - 2 a b + a)