I bet the ODE is supposed to read
[tex]x^2y''-14xy'+56y=0[/tex]
Then if [tex]y=x^r[/tex], we have [tex]y'=rx^{r-1}[/tex] and [tex]y''=r(r-1)x^{r-2}[/tex], and substituting these into the ODE gives
[tex]r(r-1)x^r-14rx^r+56x^r=0\implies r(r-1)-14r+56=r^2-15r+56=0[/tex]
Solving for r, we find
[tex]r^2-15r+56=(r-8)(r-7)=0\implies \boxed{r=8\text{ or }r=7}[/tex]
so that [tex]y_1=x^8[/tex] and [tex]y_2=x^7[/tex] are two fundamental solutions to the ODE. Thus the general solution is
[tex]\boxed{y(x)=C_1x^8+C_2x^7}[/tex]
Given that [tex]y(1)=4[/tex] and [tex]y'(1)=3[/tex], we get
[tex]\begin{cases}4=C_1+C_2\\3=8C_1+7C_2\end{cases}\implies C_1=-25\text{ and }C_2=29[/tex]
So the particular solution is
[tex]\boxed{y(x)=29x^7-25x^8}[/tex]