Answer:
30°
Step-by-step explanation:
[tex] \because \: \sin(90 \degree - \theta) = \cos \theta \\ \therefore \: \sin(90 \degree - 5 \theta) = \cos 5\theta....(1) \\ \\ \sin(90 \degree - 5 \theta) = \cos(180 \degree - \theta)...(2) \\ from \: (1) \: and \: (2) \\ \cos 5\theta = \cos(180 \degree - \theta) \\ 5 \theta = 180 \degree - \theta \\ 5 \theta + \theta= 180 \degree \\ 6\theta= 180 \degree \\ \theta = \frac{180 \degree}{6} \\ \\ \huge \red{ \boxed{\theta = 30 \degree}}[/tex]