Respuesta :
Answer:
11) D. y=5/2x+5/2 , 12) B. y=8/5x+69/5, 14) A. y=-9/5x-67/5
Step-by-step explanation:
11) The function of the perpendicular line can be found in terms of its slope and a given point by this formula:
[tex]y-y_{o} = m_{\perp}\cdot (x-x_{o})[/tex]
Where:
[tex]x_{o}[/tex], [tex]y_{o}[/tex] - Components of the given point, dimensionless.
[tex]m_{\perp}[/tex] - Slope, dimensionless.
Besides, a slope that is perpendicular to original line can be calculated by this expression:
[tex]m_{\perp} = -\frac{1}{m}[/tex]
Where [tex]m[/tex] is the slope of the original line, dimensionless.
The original slope is determined from the explicitive form of the given line:
[tex]-2\cdot x - 5\cdot y = -19[/tex]
[tex]2\cdot x +5\cdot y = 19[/tex]
[tex]5\cdot y = 19 - 2\cdot x[/tex]
[tex]y = \frac{19}{5} -\frac{2}{5}\cdot x[/tex]
The original slope is [tex]-\frac{2}{5}[/tex], and the slope of the perpendicular line is:
[tex]m_{\perp} = -\frac{1}{\left(-\frac{2}{5}\right) }[/tex]
[tex]m_{\perp} = \frac{5}{2}[/tex]
If [tex]x_{o} = -3[/tex], [tex]y_{o} = -5[/tex] and [tex]m_{\perp} = \frac{5}{2}[/tex], then:
[tex]y-(-5) = \frac{5}{2}\cdot [x-(-3)][/tex]
[tex]y + 5 = \frac{5}{2}\cdot x +\frac{15}{2}[/tex]
[tex]y = \frac{5}{2}\cdot x +\frac{5}{2}[/tex]
The right answer is D.
12) The function of the parallel line can be found in terms of its slope and a given point by this formula:
[tex]y-y_{o} = m_{\parallel}\cdot (x-x_{o})[/tex]
Where:
[tex]x_{o}[/tex], [tex]y_{o}[/tex] - Components of the given point, dimensionless.
[tex]m_{\parallel}[/tex] - Slope, dimensionless.
Its slope is the slope of the given, which must be transformed into its explicitive form:
[tex]-8\cdot x + 5\cdot y = 89[/tex]
[tex]5\cdot y = 89 +8\cdot x[/tex]
[tex]y = \frac{89}{5}+\frac{8}{5} \cdot x[/tex]
The slope of the parallel line is [tex]\frac{8}{5}[/tex].
If [tex]x_{o} = -8[/tex], [tex]y_{o} = 1[/tex] and [tex]m_{\parallel} = \frac{8}{5}[/tex], then:
[tex]y-1 = \frac{8}{5}\cdot [x-(-8)][/tex]
[tex]y-1 = \frac{8}{5}\cdot x +\frac{64}{5}[/tex]
[tex]y = \frac{8}{5}\cdot x +\frac{69}{5}[/tex]
The correct answer is B.
14) The function of the perpendicular line can be found in terms of its slope and a given point by this formula:
[tex]y-y_{o} = m_{\perp}\cdot (x-x_{o})[/tex]
Where:
[tex]x_{o}[/tex], [tex]y_{o}[/tex] - Components of the given point, dimensionless.
[tex]m_{\perp}[/tex] - Slope, dimensionless.
Besides, a slope that is perpendicular to original line can be calculated by this expression:
[tex]m_{\perp} = -\frac{1}{m}[/tex]
Where [tex]m[/tex] is the slope of the original line, dimensionless.
The original slope is determined from the explicitive form of the given line:
[tex]-5\cdot x +9\cdot y = 49[/tex]
[tex]9\cdot y = 49+5\cdot x[/tex]
[tex]y = \frac{49}{9} +\frac{5}{9}\cdot x[/tex]
The original slope is [tex]\frac{5}{9}[/tex], and the slope of the perpendicular line is:
[tex]m_{\perp} = -\frac{1}{m}[/tex]
[tex]m_{\perp} = -\frac{1}{\frac{5}{9} }[/tex]
[tex]m_{\perp} = -\frac{9}{5}[/tex]
If [tex]x_{o} = -8[/tex], [tex]y_{o} = 1[/tex] and [tex]m_{\perp} = -\frac{9}{5}[/tex], then:
[tex]y-1 = -\frac{9}{5}\cdot [x-(-8)][/tex]
[tex]y-1 = -\frac{9}{5}\cdot x-\frac{72}{5}[/tex]
[tex]y = -\frac{9}{5}\cdot x -\frac{67}{5}[/tex]
The correct answer is A.